## MODULARITY RELATIONS IN LATTICES

## R. J. MIHALEK

1. Introduction. Linear independence has been formulated lattice-theoretically by G. Birkhoff [1], J. von Neumann [4] and, in particular, L. R. Wilcox [5], who studied it in connection with ordinary modularity considered as a binary relation. In this work, the concept of a modularity relation is defined abstractly from which the theory of independence is developed. These results generalize those of S. Maeda [2] whose abstraction of independence characterizes ordinary independence. Also quasi-modularity relations are considered abstractly, which relations arise in the theory of quasi-dual-ideals [7]. Relations studied earlier by the author [3] are shown to be instances of the abstract relations considered here.

Throughout this paper L is to be a lattice with order  $\leq$ , join + and meet  $\cdot$ . For b,  $c \in L$ , (b, c)M (read (b, c) modular) means (a+b)c = a+bc for every  $a \leq c$  (M will be referred to as ordinary modularity).

The notations  $\subset$ , +,  $\cdot$ ,  $\Theta$ ,  $\times$  are respectively set-theoretic inclusion, sum, product, the empty set and cartesian product, and the set of all elements x with the property E(x) is denoted by [x; E(x)].

- 2. Modularity relations and independence. First, the notion of a modularity relation is defined abstractly, which is then used in the definition of the independence relation and the development of the independence theory.
- (2.1) DEFINITION. Let  $R \subset T \subset L \times L$ . The relation R is a modularity relation under T means
  - (a)  $(b, c)R, b' \leq b, c' \leq c, b'c' = bc, (b', c')T \text{ implies } (b', c')R;$
  - (b) (c, d)R, (b, c+d)R, b(c+d) = cd implies (b+c, d)R, (b+c)d = cd.
- Part (a) of the definition would be too broad for the purposes considered here if the condition (b', c')T were omitted from the hypotheses. The set T is introduced merely to provide a control on the pairs that are eligible to be in R and its role will become evident in the examples considered in the subsequent sections.
  - (2.2) Definition. For R a modularity relation under T, R is said
- (a) to satisfy the *intersection property* if (c, d)R, (b, c+d)R, b(c+d) = cd implies (b+d)(c+d) = d;
- (b) to be symmetric at a, for  $a \in L$ , if (b, c)R, bc = a implies (c, b)R. Examples exist showing that a modularity relation does not necessarily satisfy these properties.

(2.3) DEFINITION. Let R be a modularity relation under T. For  $n \ge 2$ , a,  $a_1$ ,  $\cdots$ ,  $a_n \in L$ ,  $(a_1, \cdots, a_n)R_a$  (read  $(a_1, \cdots, a_n)$  R-independent over a) means  $(\sum_U a_i, \sum_V a_i)R$ ,  $(\sum_U a_i)(\sum_V a_i) = a$  for every nonempty U,  $V \subset [1, \cdots, n]$  such that j < k for  $j \in U$ ,  $k \in V$ .

Throughout this section it is assumed that R is a modularity relation under T,  $n \ge 2$  and a,  $a_1, \dots, a_n \in L$ .

- (2.4) COROLLARY. Let  $(a_1, \dots, a_n)R_a$ .
- (a) If  $a_i \neq a$  for  $1 \leq i \leq n$ , then  $a_i \neq a_j$  for  $i \neq j$ .
- (b) If  $1 \leq k_1 < \cdots < k_m \leq n$ ,  $m \geq 2$ , then  $(a_k, \cdots, a_{k_m})R_a$ .
- (c) If  $a \leq a_i' \leq a_i$  for  $1 \leq i \leq n$ , then  $(a_1', \dots, a_n')R_a$  provided  $(\sum_U a_i', \sum_V a_i')T$  for every nonempty  $U, V \subset [1, \dots, n]$  such that j < k for  $j \in U$ ,  $k \in V$ .
- (2.5) THEOREM. If  $(a_1, \dots, a_n)R_a$ , then  $(a_i, a_{i+1} + \dots + a_n)R_a$  for every  $i = 1, \dots, n-1$ , and conversely, provided  $(a_i, \sum_{v} a_i)T$  for every nonempty  $V \subset [i+1, \dots, n]$ .

PROOF. The forward implication is immediate. The reverse is obvious for n=2. Suppose it holds for  $q \le n-1$  where  $n \ge 3$ . Let  $(a_i, a_{i+1} + \cdots + a_n) R_a$  for  $i=1, \cdots, n-1$  and let  $U, V \subset [1, \cdots, n]$  such that U, V are nonempty and j < k for  $j \in U, k \in V$ . Denote U by  $[j_1, \cdots, j_u]$  and V by  $[k_1, \cdots, k_v]$ , where, without loss of generality,  $j_1 < \cdots < j_u < k_1 < \cdots < k_v$ . Then by (2.4.c),

$$(a_{j_i}, a_{j_{i+1}} + \cdots + a_{k_v})R_a$$
 for  $i = 1, \cdots, u$ 

and

$$(a_{k_i}, a_{k_{i+1}} + \cdots + a_{k_v})R_a$$
 for  $i = 1, \dots, v-1$ .

In case  $U+V\neq [1, \dots, n]$ , it follows from the induction hypothesis that  $(a_{j_1}, \dots, a_{j_u}, a_{k_1}, \dots, a_{k_v})R_a$ , whence  $(\sum_U a_i, \sum_V a_i)R_a$ . Let  $U+V=[1, \dots, n]$ . From the above argument,

$$\left(a_{j_2}+\cdots+a_{j_u},\sum_{v}a_i\right)R_a,$$

and by hypotheses,  $(a_{i_1}, a_{i_2} + \cdots + a_{i_u} + \sum_{v} a_i)R_a$ . Thus (2.1.b) yields  $(\sum_{v} a_i, \sum_{v} a_i)R_a$ . Hence the reverse implication holds for q = n and the result follows by induction.

(2.6) THEOREM. Let R satisfy the intersection property. If  $(a_1, \dots, a_n)R_a$ , then  $(\sum_U a_i)(\sum_V a_i) = \sum_{UV} a_i$  for every U,  $V \subset [1, \dots, n]$  such that  $UV \neq \Theta$  and j < k < m for  $j \in U - UV$ ,  $k \in V - UV$ ,  $m \in UV$ .

PROOF. Let W = U - UV, X = V - UV. Then by the hypotheses,

 $\begin{array}{ll} (\sum_{\mathbf{X}} a_i, & \sum_{\mathit{UV}} a_i) R_a, & (\sum_{\mathbf{W}} a_i, & \sum_{\mathbf{X}} a_i + \sum_{\mathit{UV}} a_i) R_a, & \text{whence} \\ (\sum_{\mathit{U}} a_i) (\sum_{\mathbf{V}} a_i) = (\sum_{\mathbf{W}} a_i + \sum_{\mathit{UV}} a_i) (\sum_{\mathbf{X}} a_i + \sum_{\mathit{UV}} a_i) = \sum_{\mathit{UV}} a_i & \text{by virtue of the intersection property.} \end{array}$ 

(2.7) LEMMA. Let R satisfy the intersection property. If  $(a_1, \dots, a_n)R_a$ ,  $U+V=[1, \dots, n]$ ,  $UV=\Theta$ , then  $(\sum_U a_i)(\sum_V a_i)=(a_n)(\sum_U a_i)(\sum_V a_i)$ .

PROOF. Let  $U, V \neq \Theta$  and let  $1 \in U$ . Partition the set  $[1, \dots, n]$  with sets  $W_i$  defined so that  $W_{2i-1} \subset U$ ,  $W_{2i} \subset V$ , and j' < k' for  $j' \in W_j$ ,  $k' \in W_k$ , j < k. (The existence of such a partition is readily proved inductively.) Then  $1 \in W_1$  and for some  $m, n \in W_m$ . The result is immediate for m = 2; let  $m \ge 3$ . Define  $b_j = \sum_{w_j} a_i$  for  $1 \le j \le m$ . Then  $(\sum_{U} a_i)(\sum_{V} a_i) = (\sum_{U} a_i)(b_1 + \sum_{3}^{m} b_i)(b_2 + \sum_{3}^{m} b_i)(\sum_{V} a_i) = (\sum_{U} a_i)(\sum_{V} a_i)$ , the last equality holding by virtue of the intersection property. For  $m \ge 4$ , let  $3 \le q < m$ . Then

$$\left(\sum_{1}^{q-1}b_i+\sum_{q+1}^{m}b_i\right)\geq\sum_{U}a_i$$

or  $\sum_{v} a_i$  according as q is even or odd. Thus

$$\left(\sum_{U} a_{i}\right)\left(\sum_{q}^{m} b_{i}\right)\left(\sum_{V} a_{i}\right)$$

$$= \left(\sum_{U} a_{i}\right)\left(\sum_{1}^{q-1} b_{i} + \sum_{q+1}^{m} b_{i}\right)\left(b_{q} + \sum_{q+1}^{m} b_{i}\right)\left(\sum_{V} a_{i}\right)$$

$$= \left(\sum_{U} a_{i}\right)\left(\sum_{q+1}^{m} b_{i}\right)\left(\sum_{V} a_{i}\right).$$

Therefore

$$\bigg(\sum_{U}a_{i}\bigg)\bigg(\sum_{V}a_{i}\bigg)=\bigg(\sum_{U}a_{i}\bigg)(b_{m})\bigg(\sum_{V}a_{i}\bigg).$$

Let  $X = W_m - [n]$  with  $X \neq \Theta$ ; otherwise, the proof is complete. Then  $(\sum_{i=1}^{m-1} b_i + a_n) \ge \sum_{i=1}^{m-1} a_i$  or  $\sum_{i=1}^{m-1} v_i = a_i$  according as m is even or odd, whence

$$\left(\sum_{U} a_{i}\right) (b_{m}) \left(\sum_{V} a_{i}\right)$$

$$= \left(\sum_{U} a_{i}\right) \left(\sum_{1}^{m-1} b_{i} + a_{n}\right) \left(\sum_{X} a_{i} + a_{n}\right) \left(\sum_{V} a_{i}\right)$$

$$= \left(\sum_{U} a_{i}\right) (a_{n}) \left(\sum_{V} a_{i}\right).$$

Hence

$$\left(\sum_{U} a_{i}\right)\left(\sum_{V} a_{i}\right) = (a_{n})\left(\sum_{U} a_{i}\right)\left(\sum_{V} a_{i}\right).$$

(2.8) THEOREM. Let R satisfy the intersection property. If  $(a_1, \dots, a_n)R_a$ , then for nonempty disjoint  $U, V \subset [1, \dots, n]$ ,  $(\sum_{U} a_i)(\sum_{V} a_i) = a$ .

PROOF. The result is immediate for n=2. Suppose it holds for  $q \le n-1$  where  $n \ge 3$ . Then it holds for  $U+V \ne [1, \cdots, n]$ , with an application of (2.4.b). Let  $U+V=[1, \cdots, n]$ . From the lemma,  $(\sum_{U} a_i)(\sum_{V} a_i) = (a_n)(\sum_{U} a_i)(\sum_{V} a_i)$ . Let  $n \in V$ . Then for V=[n],  $(\sum_{U} a_i)(\sum_{V} a_i) = a$  by definition, and for  $V \ne [n]$ ,  $(\sum_{U} a_i)(\sum_{V} a_i) = a$  by the induction hypothesis. Similarly, for  $n \in U$ ,  $(\sum_{U} a_i)(\sum_{V} a_i) = a$ . Hence the result holds for n = q and the proof is complete.

- (2.9) DEFINITION. Define  $(a_1, \dots, a_n)\overline{R}_a$  (read  $(a_1, \dots, a_n)$  symmetrically R-independent over a) to mean  $(a_{i_1}, \dots, a_{i_n})R_a$  for every permutation  $(i_1, \dots, i_n)$  of the integers  $[1, \dots, n]$ .
- (2.10) COROLLARY. (a) The relation  $\overline{R}_a$  is symmetric. (b) If  $(a_1, \dots, a_n)\overline{R}_a$ , then  $(a_1, \dots, a_n)R_a$ .
- (2.11) THEOREM. If  $(a_1, \dots, a_n)\overline{R}_a$ , then  $(a_j, \sum_{i\neq j} a_i)\overline{R}_a$  for  $1\leq j\leq n$ , and conversely, provided  $(a_j, \sum_{v} a_i)T$  for every nonempty  $V\subset [1, \dots, n]$  such that  $j\in V$ .

PROOF. This follows from (2.5) in a manner similar to the corresponding result in [5].

(2.12) THEOREM. Let R satisfy the intersection property. If  $(a_1, \dots, a_n)\overline{R}_a$ , then  $(\sum_U a_i)(\sum_V a_i) = \sum_{UV} a_i$  for every  $U, V \subset [1, \dots, n]$  such that  $UV \neq \Theta$ .

PROOF. Let  $U \subset V$  and  $V \subset U$ . Then let  $U - UV = [i_1, \dots, i_u]$ ,  $V - UV = [j_1, \dots, j_v]$ ,  $UV = [k_1, \dots, k_w]$ , where the  $i_m$ ,  $j_m$  and  $k_m$  are distinct. Define

$$b_m = \begin{cases} a_{i_m} & \text{for } 1 \leq m \leq u, \\ a_{j_{m-u}} & \text{for } u+1 \leq m \leq u+v, \\ a_{k_{m-u-v}} & \text{for } u+v+1 \leq m \leq u+v+w. \end{cases}$$

Then  $(b_1, \dots, b_{u+v+w})R_a$  by (2.9) and (2.4.b). Also

$$U' = [1, \dots, u, u + v + 1, \dots, u + v + w]$$

and

$$V' = [u+1, \cdots, u+v+w]$$

satisfy the hypotheses of (2.6), whence

$$\bigg(\sum_{U}a_i\bigg)\bigg(\sum_{V}a_i\bigg)=\bigg(\sum_{U'}b_i\bigg)\bigg(\sum_{V'}b_i\bigg)=\sum_{U'V'}b_i=\sum_{UV}a_i.$$

In the remainder of this section, some results are stated for R symmetric at a. The proofs of these results are similar to those of the corresponding results in [5] and will be omitted. In case R were a symmetric relation, it is evident that R would be symmetric at a for every  $a \in L$ . If R is symmetric at a, then the relation  $R_a$  is symmetric, or equivalently,  $(b, c)R_a$  if and only if  $(b, c)\overline{R}_a$ .

- (2.13) LEMMA. Let R be symmetric at a. If  $(c, b, d)R_a$ , then  $(b, c, d)R_a$ .
- (2.14) THEOREM. If R is symmetric at a, then  $(a_1, \dots, a_n)\overline{R}_a$  if and only if  $(a_1, \dots, a_n)R_a$ .
- (2.15) COROLLARY. If R is symmetric at a, then  $(a_1, \dots, a_n)R_a$  if and only if  $(\sum_{U} a_i, \sum_{V} a_i)R_a$  for every nonempty disjoint U, V  $\subset [1, \dots, n]$ .
- (2.16) THEOREM. Let R be symmetric at a and let  $b_1, \dots, b_m \in L$  where  $m \ge 2$ . If  $(a_1, \dots, a_n)R_a$ ,  $(b_1, \dots, b_m)R_a$  and  $(\sum_{i=1}^n a_i, \sum_{i=1}^m b_i)R_a$ , then  $(a_1, \dots, a_n, b_1, \dots, b_m)R_a$ .
- (2.17) COROLLARY. Let R be symmetric at a and for  $j=1, \dots, n$ , let  $m_j \ge 2$  and  $a_{ij} \in L$  for  $i=1, \dots, m_j$ . If  $(a_{1j}, \dots, a_{m_{jj}})R_a$  for  $j=1, \dots, n$  and if  $(\sum_{i=1}^{m_1} a_{i1}, \dots, \sum_{i=1}^{m_n} a_{in})R_a$ , then

$$(a_{11}, \dots, a_{m_11}, \dots, a_{1n}, \dots, a_{m_nn})R_a.$$

- 3. Quasi-modularity relations. In the study of quasi-dual-ideals, the relations of weak modularity, as denoted by Wilcox [7], and quasi-modularity, as denoted by the author [3], arise with properties similar to those of ordinary modularity. In this section the material of §2 is applied in an abstraction of these relations.
- (3.1) DEFINITION. A nonempty subset S of L is a quasi-dual-ideal (q.d.i.) if
  - (a)  $x \in S$ ,  $y \ge x$  implies  $y \in S$ ;
  - (b)  $x, y \in S$ , (x, y)M implies  $xy \in S$ .

The smallest q.d.i. containing a set T (or elements  $a, b, c, \cdots$ ) is denoted by  $\{T\}$  (or  $\{a, b, c, \cdots\}$ ). The set of all q.d.i. is  $\mathcal{L}$  and the set of all principal q.d.i. (of the form  $\{a\}$ ) is  $\mathcal{L}$ . For  $\alpha, \beta \in \mathcal{L}$ ,

 $\alpha \leq \beta$  means  $\alpha \supset \beta$ ,  $\alpha \cup \beta = \alpha \cdot \beta$  and  $\alpha \cap \beta = \{\alpha + \beta\}$ .

It is useful to note that the principal q.d.i. of L coincide with the principal dual ideals of L. For the next corollary and for all statements with reference to  $\mathcal L$  in the remainder of the paper, it is assumed that l.u.b. L=1 exists.

- (3.2) COROLLARY. The set  $\mathcal{L}$  is a complete lattice with respect to  $\leq$ ; the lattice operations are  $\cup$ ,  $\cap$ , and L and  $\{1\}$  are the zero and unit respectively. If (b, c)M,  $\{b, c\} = \{bc\}$ . The lattice L is isomorphic to the set S, a lattice subset (not necessarily a sublattice) of L, under  $a \rightarrow \{a\}$ .
- PROOF. In S, l.u.b.  $[\{a\}, \{b\}] = \{a+b\}$  and g.l.b.  $[\{a\}, \{b\}] = \{ab\}$ . The isomorphism now follows and the remainder is immediate.
- (3.3) DEFINITION. Let  $Q \subset L \times L$ . Then Q is a quasi-modularity relation means that  $Q = [(\{b\}, \{c\}); (b, c)Q]$  is a modularity relation under  $S \times S$  in  $\mathcal{L}$ . For Q a quasi-modularity relation, Q is said to satisfy the *intersection property* (to be symmetric at  $\alpha$ , for  $\alpha \in \mathcal{L}$ ) if Q satisfies the intersection property (if Q is symmetric at  $\alpha$ ) in  $\mathcal{L}$ .
- (3.4) DEFINITION. Let Q be a quasi-modularity relation. For  $n \ge 2$ ,  $a_1, \dots, a_n \in L$  and  $\alpha \in \mathfrak{L}$ ,  $(a_1, \dots, a_n)Q_\alpha$  (read  $(a_1, \dots, a_n)Q_\alpha$ ) Q-quasi-independent over  $\alpha$ ) means  $(\{a_1\}, \dots, \{a_n\})Q_\alpha$  where Q is defined as in (3.3).
- (3.5) COROLLARY. If  $(a_1, \dots, a_n)Q_\alpha$ , then  $(\sum_U a_i, \sum_V a_i)Q$ ,  $\{\sum_U a_i, \sum_V a_i\} = \alpha$  for every nonempty  $U, V \subset [1, \dots, n]$  such that j < k for  $j \in U$ ,  $k \in V$ , and conversely.

The corollary shows the analogy between Q-quasi-independence over a q.d.i. of L and R-independence over an element of L as defined in (2.3). The results of the independence theory of the previous section may be applied to  $\mathbb{Q}$ , yielding a corresponding theory for Q. If one keeps in mind the equalities  $\{b\} \cup \{c\} = \{b+c\}, \ \{b\} \cap \{c\} = \{b,c\}$  and that  $\alpha \leq \{a\}$  means  $a \in \alpha$ , the independence theory for Q may be stated free of the notation of the lattice  $\mathfrak{L}$ .

- 4. Examples. An example of a modularity relation is obtained from a special case of relative modularity, the latter being a relativization of ordinary modularity.
- (4.1) DEFINITION. For  $S \subset L$ , b,  $c \in L$ ,  $(b, c) M_S$  (read (b, c) modular relative to S) means (a+b)c=a+bc for every  $a \in S$  such that  $a \le c$ .

Evidently,  $M = M_L$ . In addition,  $M_S$  satisfies many of the properties of M, some in a modified form. In particular, the next lemma is of interest.

(4.2) Lemma. If  $(b, c)M_S$ ,  $b' \le b$ ,  $c' \le c$ , b'c' = bc, then  $(b', c')M_S$ .

PROOF. Let  $a \le c'$ ,  $a \in S$ . Then  $(a+b')c' \le (a+b)c = a+bc = a+b'c'$ , whence  $(b', c')M_S$  since the reverse inequality  $(a+b')c' \ge a+b'c'$  holds universally for  $a \le c'$ .

(4.3) THEOREM. If S is join-closed, then  $R = (S \times L) \cdot M_S$  is a modularity relation under  $S \times L$ .

PROOF. Part (a) of (2.1) readily follows with an application of (4.2). For Part (b), let (c, d)R, (b, c+d)R, b(c+d)=cd. Then  $b, c \in S$ ,  $(b+c, d) \in S \times L$  and  $b(c+d) \le c$ . Now let  $a \le d$ ,  $a \in S$ . Then  $a+c \in S$ ,  $a+c \le c+d$  and

$$(a + (b + c))d = ((a + c) + b)(c + d)d = ((a + c) + b(c + d))d$$
$$= (a + (c + b(c + d)))d = (a + c)d$$
$$= a + cd \le a + (b + c)d.$$

Thus  $(b+c, d)M_s$ , whence (b+c, d)R. Also

$$(b+c)d = (c+b)(c+d)d = (c+b(c+d))d = cd.$$

(4.4) THEOREM. If S is join-closed, then  $R = (S \times S) \cdot M_S$  is a modularity relation under  $S \times S$  satisfying the intersection property.

PROOF. The proof that R is a modularity relation under  $S \times S$  is essentially the proof of (4.3). For the remainder, let (c,d)R, (b,c+d)R, b(c+d)=cd. Then  $d \in S$ ,  $b(c+d) \leq d$  and since  $(b,c+d)M_S$ ,  $(b+d) \cdot (c+d)=d+b(c+d)=d$ .

Two examples of quasi-modularity relations are now considered.

- (4.5) Definition. For  $b, c \in L$ ,
- (a)  $(b, c)M_0$  (read (b, c) weakly modular) means  $\{a+b, c\} = \{a\}$   $\cup \{b, c\}$  for every  $a \le c$ ;
- (b)  $(b, c)M_q$  (read (b, c) quasi-modular) means  $(b, c)M_S$  where  $S = \{b, c\}$ .
- (4.6) THEOREM. The relations  $M_0$  and  $M_q$  are quasi-modularity relations satisfying the intersection property.

The proof of this theorem is omitted. It is of interest to note that always  $M_0 \subset M_q$  and that examples of left-complemented [6] lattices exist for which the inclusion is proper.

To show that the notion of a modularity relation is more general than ordinary modularity, one may consider the relation  $\mathbb{Q}$  in  $\mathcal{L}$  corresponding to  $M_0$ , which is incidentally  $(\mathbb{S} \times \mathbb{S}) \cdot M_{\mathbb{S}}$ . In case L is not a modular lattice, this  $\mathbb{Q}$ , although a modularity relation, is not ordinary modularity for  $\mathcal{L}$ .

## REFERENCES

- 1. G. Birkhoff, Abstract linear independence and lattices, Amer. J. Math. vol. 57 (1935) pp. 800-804.
- 2. S. Maeda, Dimension functions on certain general lattices, J. Sci. Hiroshima Univ. Ser. A vol. 19 (1955) pp. 211-237.
- 3. R. J. Mihalek, *Modularity relations in lattices*. Preliminary report, Notices Amer. Math. Soc. vol. 5 (1958) p. 349.
  - 4. J. von Neumann, Lectures on continuous geometries, vol. 1, Princeton, 1936.
- 5. L. R. Wilcox, Modularity in the theory of lattices, Ann. of Math. vol. 40 (1939) pp. 490-505.
- 6. ——, A note on complementation in lattices, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 453-458.
- 7. ——, Modular extensions of semi-modular lattices, Bull. Amer. Math. Soc. vol. 61 (1955) p. 524.

Illinois Institute of Technology