MODULARITY RELATIONS IN LATTICES
R. J. MIHALEK

1. Introduction. Linear independence has been formulated lattice-
theoretically by G. Birkhoff [1], J. von Neumann [4] and, in par-
ticular, L. R. Wilcox [5], who studied it in connection with ordinary
modularity considered as a binary relation. In this work, the concept
of a modularity relation is defined abstractly from which the theory
of independence is developed. These results generalize those of S.
Maeda [2] whose abstraction of independence characterizes ordinary
independence. Also quasi-modularity relations are considered ab-
stractly, which relations arise in the theory of quasi-dual-ideals [7].
Relations studied earlier by the author [3] are shown to be instances
of the abstract relations considered here.

Throughout this paper L is to be a lattice with order <, join +
and meet -. For b, cEL, (b, ¢) M (read (b, ¢) modular) means (a+b)c
=a+bc for every a =c¢ (M will be referred to as ordinary modular-
ity).

The notations C, +, -, ©, X are respectively set-theoretic inclu-
sion, sum, product, the empty set and cartesian product, and the
set of all elements x with the property E(x) is denoted by [x; E(x)].

2. Modularity relations and independence. First, the notion of a
modularity relation is defined abstractly, which is then used in the
definition of the independence relation and the development of the
independence theory.

(2.1) DEeFINITION. Let RCTCLXL. The relation R is a modular-
ity relation under T means

(@) (b, )R, b'=b, ¢'=Zc, b'c’ =bc, (b', ¢')T implies (b’, ¢')R;

(b) (¢, d)R, (b, c+ad)R, b(c+d) =cd implies (b+c¢, d)R, (b+c)d=cd.

Part (a) of the definition would be too broad for the purposes con-
sidered here if the condition (&', ¢')T were omitted from the hypoth-
eses. The set T is introduced merely to provide a control on the pairs
that are eligible to be in R and its role will become evident in the
examples considered in the subsequent sections.

(2.2) DEerFINITION. For R a modularity relation under T, R is said

(a) to satisfy the imtersection property if (¢, d)R, (b, c+d)R,
b(c+d) =cd implies (b+d)(c+d)=d;

(b) to be symmetric at a, for aE L, if (b, ¢)R, bc=a implies (¢, b)R.

Examples exist showing that a modularity relation does not neces-
sarily satisfy these properties.
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(2.3) DEeFINITION. Let R be a modularity relation under T. For

n=2,a,ay, - - -,a,EL, (a1, - - -, a,)R, (read (ai, - - -, @&n) R-inde-
pendent over a) means (D_vai;, 2va)R, (Duva)(Dva)=a for
every nonempty U, VC|[1, - - -, n] such that j<k for jEU, k€ V.

Throughout this section it is assumed that R is a modularity rela-
tion under T, =2 and a, a1, + - -, a,EL.

(2.4) CoroLLARY. Let (a1, * + *, @n)Ra.

(@) If a;54a for 1 Si<n, then a;%a; for 1.

(b) If 1§k1< AR <km§ny mgz) then (a‘kn ] akm)Ra-

(c) If a<a! Za; for 15iZn, then (a{, - -, ad)Ra provided

(Xval, 2val)T for every nonempty U, VC|[1, - - -, n] such that
j<kforj€ U, kEV.

(2.5) THEOREM. If (a1, * + +, @n)Rq, then (ai, i1+ - -+ +a.)Ra
for every i=1, - - -, n—1, and conversely, provided (a:, Y v a;)T for
every nonempty VC [i+1, - - -, n].

ProoF. The forward implication is immediate. The reverse is obvi-
ous for n=2. Suppose it holds for ¢=n—1 where n=3. Let

(@i, @isa+ - + - +an)Rafori=1, - - - ,m—1andletU, VC[1, - - -, n]
such that U, V are nonempty and j<k for jE U, k& V. Denote U by
[41, - - -, ju] and V by [k, - - -, k. ], where, without loss of general-

ity, 1< + + - <ju<k < - -+ <k,. Then by (2.4.c),
(@, @i,y + -+ & )Re fori=1,---,u
and
(ary @h;py+ - -+ @ )Re  fori=1,---,0—1
In case U+ Vs[1, - - -, n], it follows from the induction hypothesis

that (aj,, - - -, @j,, @&y * + +, Gk,)Ra, whence (ZU a; ZV a;)R,. Let
U+V=|[1, -, n]. From the above argument,
(afz + -+ @y Eai) Ra)
v

and by hypotheses, (a;,, aj,+ - - - +a;,+ > va)R. Thus (2.1.b)
yields (X_v @i, v a;)R.. Hence the reverse implication holds for
g¢=n and the result follows by induction.

(2.6) THEOREM. Let R satisfy the intersection property. If
(a1, -+, @n)Ra, then (ZU ai)(zv a;) = EUV a; for every U, V
Cl1, .-+, n] such that UVs£0 and j<k<m for j€U—-UV,
kEV-UV,m&UV.

ProoF. Let W=U—-UV, X=V—UV. Then by the hypotheses,
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(Xxai, DwvadRsy (2wai Jxai+ Youva)R, whence
(ZU ai)(ZV a;)=( ZW a;+ ZUV ai)( Ex a;+ ZUV a;)= ZUV a; by

virtue of the intersection property.

(2.7) LeMMA. Let R satisfy the intersection property. If

(o, @R, U+ V=1, -, n], UV=, then (Xv a:)( X as)
= (an)( ZU ai)( ZV ai)-
PRroOF. Let U, V0 and let 1€ U. Partition the set [1, - - -, n]

with sets W; defined so that Wy, CU, Wy CV, and j' <k’ for
J'EW,, k& Wy, j<k. (The existence of such a partition is readily
proved inductively.) Then 1E W, and for some m, n € W,,. The result
is immediate for m=2; let m=3. Define b;= ZW, a; for 1=5j=<m.

Then (2 v a)(2v @) = (v a:) (b + 225 b:) (b2 + 25 b:)(2v @)
=(Dva)( 2™ b)( Zv a;), the last equality holding by virtue of the
intersection property. For m =4, let 3<¢g<m. Then

(Zb +Zb)gXU:a.-

g+1

or Y v a; according as ¢ is even or odd. Thus

(Ze)(Ze)( )
~(Ze)(Ser Zo) (st Zo)( o)

“(FeUE)(F)
(Fe)(2)=(F)0(32)

Let X=W,— [n] with X > 0; otherwise, the proof is complete. Then
(3™ b;+a,) = D va; or »ya; according as m is even or odd,
whence

(Ze)oa(ze)
-(Ze)(Ture)(Tere)(Zw)
=(Ze)e(T)

Therefore
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(Fe)(2) = (Fo)(F2)

(2.8) THEOREM. Let R satisfy the intersection property. If
(@1, + + +, @n)Ra, then for momempty disjoint U, VC|[1,-- -, n],
(ZU ai)( ZV a;) =a.

ProoF. The result is immediate for n=2. Suppose it holds for
g=<n—1 where #=3. Then it holds for U+ V> [1, - - -, n], with an
application of (2.4.b). Let U+V=[1, - - -, n]. From the lemma,
(2w ad) (v ai) =(as) (v @:)(2v a:). Let € V. Then for V=[n],
(2_v a:)(DO_v a;) =a by definition, and for Vs [n], (D v a:)(2v a:)
=(a.) (v a)(2va)=aY va;=a by the induction hypothesis.
Similarly, for n€ U, (X_v a:)( 2_v a:) =a. Hence the result holds for
n=gq and the proof is complete.

Hence

(2.9) DEFINITION. Define (a1, - - -, a,)R, (read (a1, - - -, @n) sym-
metrically R-independent over a) to mean (a;, - - -, @;,)Ra for every
permutation (41, - - -, 4,) of the integers [1, - - -, n].

(2.10) CoroLLARY. (a) The relation R, is symmetric. (b) If
(@, - * -, @n)Rs, then (a1, * + +, @n)Ra.
(2.11) THEOREM. If (a1, - - -, @n)Ra, then (aj, 2 ix;ja:i)Ra for

1<j<n, and conversely, provided (a;, Y v a;)T for every nonempty
VC1, - - -, n] such that jEV.

Proor. This follows from (2.5) in a manner similar to the corre-
sponding result in [5].

(2.12) THEOREM. Let R salisfy the intersection property. If

(@, -+, an)Ra, then (Dva)(Dvai)= 2 uva; for every U, V
Cl1, - - -, n] such that UV=0.

Proor. Let UQV and VA U. Then let U—=UV=1[4, - - -, 1.],
V—=UV=[j, ", Jo)y UV=[k1, - - -, ky], where the i, jn and kn
are distinct. Define

a;,,
b = {aj,_, forut+1=m=u+r,
Gy —y—y foru+v+1=m=u+v+ w
Then (b1, * * *, buts+w)Ra by (2.9) and (2.4.b). Also

U= - - uut+o+1,- -, u+v+w]

forl =m =< u,
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and
Vi=lu+1,-- -, u+0v+ w
satisfy the hypotheses of (2.6), whence

(Fo)(Fe)=(F2)(32)- 2o

In the remainder of this section, some results are stated for R
symmetric at a. The proofs of these results are similar to those of
the corresponding results in [5] and will be omitted. In case R were
a symmetric relation, it is evident that R would be symmetric at a
for every a € L. If R is symmetric at a, then the relation R, is sym-
metric, or equivalently, (b, ¢)R, if and only if (b, ¢)R,.

(2.13) LeMMA. Let R be symmetric ata. If (¢, b, d)R,, then (b, ¢, d)R,.

(2.14) THEOREM. If R is symmetric at a, then (a1, - - -, @n)Ra if
and only if (a1, * + +, @n)Ro.

(2.15) COROLLARY. If R is symmetric at a, then (a1, - - - , @) Rs if
and only if (Dvas D.vai)R. for every nomempty disjoint U, V
C[l, e, nl.

(2.16) THEOREM. Let R be symmetric at a and let by, - - -, b &L
wherem=2.If (a1, * * * ,@n)Ray (b1, + + * ,bm)Ra and (D_"as, D7 b:)Ra,
then (@1, + + * , @uy b1, - -, bm)Ra.

(2.17) CoRrOLLARY. Let R be symmetric at a and for j=1, - - - | n,
let m;22 and ay; &L for i=1, .-, m; If (a1j, -+ +, @mj)Ra for
i=1,---,mnandif (X Mau, -+, D™ ain)Rs, then

(dn, Ctty Gmyyy Byttt )am,,n)Ra~

3. Quasi-modularity relations. In the study of quasi-dual-ideals,
the relations of weak modularity, as denoted by Wilcox [7], and
quasi-modularity, as denoted by the author [3], arise with properties
similar to those of ordinary modularity. In this section the material
of §2 is applied in an abstraction of these relations.

(3.1) DEFINITION. A nonempty subset S of L is a quasi-dual-ideal
(q.d.i.) if

(a) xE€S, y=«x implies yES;

(b) x, yES, (x, y) M implies xyES.

The smallest q.d.i. containing a set T (or elements @, b, ¢, - - - ) is
denoted by {T} (or {a, b, ¢, - - - }). The set of all q.d.i. is £ and
the set of all principal q.d.i. (of the form {a}) is 8. For o, fE &,
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a=f means aDB, a\UB=a-B and aMNB= {a-i-ﬁ}.

It is useful to note that the principal q.d.i. of L coincide with the
principal dual ideals of L. For the next corollary and for all state-
ments with reference to £ in the remainder of the paper, it is assumed
that Lu.b. L=1 exists.

(3.2) CorOLLARY. The set £ is a complete lattice with respect to <
the lattice operations are \J, N, and L and {1} are the zero and unit
respectively. If (b, ¢) M, {b, c} = {bc}. The lattice L is isomorphic to
the {set} 8, a lattice subset (not mecessarily a sublattice) of £, under
a—iaj.

Proor. In 8, Lu.b. [{a}, {8}]={a+b} and glb. [{a}, {b}]
= {ab}. The isomorphism now follows and the remainder is immedi-
ate.

(3.3) DeFiNiTION. Let QCLXL. Then Q is a quasi-modularity
relation means that @=[({b}, {c}); (6, ¢)Q] is a modularity relation
under §X8 in £. For Q a quasi-modularity relation, Q is said to
satisfy the intersection property (to be symmetric at o, for aE £) if
Q satisfies the intersection property (if @ is symmetric at «) in £.

(3.4) DeFiNITION. Let Q be a quasi-modularity relation. For
n=2,ai, -+ ,e.ELand aE L, (a1, -+ -, @,)Qq (read (a1, - - -, @n)
Q-quasi-independent over a) means ({ ai}, - -+, {a.})Q. where @ is
defined as in (3.3).

(3.5) COROLLARY. If (a1, + +, @n)Qa then (Xvai, Dva)Q,
{ Xva, 2w ai} =a for every nonempty U, VC[1, - - -, n] such that
j<k for j& U, kS V, and conversely.

The corollary shows the analogy between Q-quasi-independence
over a q.d.i. of L and R-independence over an element of L as defined
in (2.3). The results of the independence theory of the previous sec-
tion may be applied to @, yielding a corresponding theory for Q. If
one keeps in mind the equalities {8}\U{c}={b+c}, {b}N{c}
={b, ¢} and that @< {a} means a€aq, the independence theory for
Q may be stated free of the notation of the lattice £.

4. Examples. An example of a modularity relation is obtained
from a special case of relative modularity, the latter being a relativ-
ization of ordinary modularity.

(4.1) DEFINITION. For SCL, b, cEL, (b, ¢) Mg (read (b, ¢) modular
relative to S) means (a+b)c=a+bc for every a &S such that a<c.

Evidently, M= M. In addition, M satisfies many of the proper-
ties of M, some in a modified form. In particular, the next lemma is
of interest.
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(4.2) LeEmMA. If (b, ¢) Ms, b’ b, ¢’ <c, b'c’ =bc, then (b, ¢') M.

Proor. Let a=¢/, a€S. Then (e¢+b')c' £ (a+b)c=a+bc=a+b'c’,
whence (b, ¢’)Ms since the reverse inequality (e¢+b')c'=Za+b'c’
holds universally for a <¢'.

(4.3) THEOREM. If S s join-closed, then R=(SXL)-Mg is a
modularity relation under SX L.

Proor. Part (a) of (2.1) readily follows with an application of
(4.2). For Part (b), let (¢, d)R, (b, c+d)R, b(c+d) =cd. Then b, cES,
(b+c¢, d)ESXL and b(c+d) =c. Now let a =d, aES. Then a+cES,
a+c=c+d and

(e+ @+e))d=((a+c)+b(c+dd=(c+c)+blc+ad)d
=(e+ c+bdlc+d))d=(a+)d
=a+cd=Za+ b+ o)d.

Thus (b+c¢, d) Ms, whence (b+c¢, d)R. Also
G+ c)d=(+ b+ dd=(c+ blc+ d)d = cd.

(4.4) THEOREM. If S is join-closed, then R=(SXS) - Mg is a modu-
larity relation under SX.S satisfying the intersection property.

Proor. The proof that R is a modularity relation under SXS is
essentially the proof of (4.3). For the remainder, let (¢, d)R, (b, c+d) R,
b(c+d) =cd. Then d&S, b(c+d)=d and since (b, c+d)Ms, (b+d)
“(c+d)=d+b(c+d) =d.

Two examples of quasi-modularity relations are now considered.

(4.5) DeriNiTION. For b, cEL,

(@) (b, c)M, (read (b, ¢) weakly modular) means {a+b, c} = { a}
U{b, ¢} for every a=c;

(b{) (b,} c)M, (read (b, ¢) quasi-modular) means (b, ¢)Ms where
S=1{b, cy.

(4.6) THEOREM. The relations M, and M, are quasi-modularity
relations satisfying the intersection property.

The proof of this theorem is omitted. It is of interest to note that
always M,C M, and that examples of left-complemented [6] lattices
exist for which the inclusion is proper.

To show that the notion of a modularity relation is more general
than ordinary modularity, one may consider the relation @ in £
corresponding to My, which is incidentally (§X8)-Mg. In case L is
not a modular lattice, this @, although a modularity relation, is not
ordinary modularity for £.
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