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1. Introduction. Linear independence has been formulated lattice-

theoretically by G. Birkhoff [l], J. von Neumann [4] and, in par-

ticular, L. R. Wilcox [5], who studied it in connection with ordinary

modularity considered as a binary relation. In this work, the concept

of a modularity relation is defined abstractly from which the theory

of independence is developed. These results generalize those of S.

Maeda [2 ] whose abstraction of independence characterizes ordinary

independence. Also quasi-modularity relations are considered ab-

stractly, which relations arise in the theory of quasi-dual-ideals [7].

Relations studied earlier by the author [3 ] are shown to be instances

of the abstract relations considered here.

Throughout this paper L is to be a lattice with order ^, join +

and meet •. For b, cÇ^L, {b, c)M (read (b, c) modular) means {a-\-b)c

= a-\-bc for every a^c {M will be referred to as ordinary modular-

ity).

The notations C, +, -, ©, X are respectively set-theoretic inclu-

sion, sum, product, the empty set and cartesian product, and the

set of all elements x with the property E{x) is denoted by [x; E{x)].

2. Modularity relations and independence. First, the notion of a

modularity relation is defined abstractly, which is then used in the

definition of the independence relation and the development of the

independence theory.

(2.1) Definition. Let RCTQLXL. The relation R is a modular-

ity relation under T means

(a) (b, c)R, b'£h, c'^c, b'c' =bc, {b', c')T implies {b', c')R;

(b) (c, d)R, (b, c+d)R, b{c+d) =cd implies {b+c, d)R, (b+c)d = cd.
Part (a) of the definition would be too broad for the purposes con-

sidered here if the condition {b', c') T were omitted from the hypoth-

eses. The set T is introduced merely to provide a control on the pairs

that are eligible to be in R and its role will become evident in the

examples considered in the subsequent sections.

(2.2) Definition. For R a modularity relation under T, R is said

(a) to satisfy the intersection property if (c, d)R, {b, c-{-d)R,

b{c+d) =cd implies {b-\-d){cJrd) =d;

(b) to be symmetric at a, for a£L, if {b, c)R, bc = a implies (c, b)R.

Examples exist showing that a modularity relation does not neces-

sarily satisfy these properties.
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(2.3) Definition. Let i? be a modularity relation under T. For

n^2, a, alt • ■ ■ , a„£7, (ai, • • • , an)Ra (read (ai, • • • , an) R-inde-

pendent over a) means (^2u ait ^2,v al)R, (^u a¡)(^2v «;) =a for

every nonempty U, F£[l, ■■■,«] such that/<& for/££/, &£7.

Throughout this section it is assumed that i? is a modularity rela-

tion under T, w2:2 and a, ait ■ ■ • , a„ÇzL.

(2.4) Corollary. Let (au ■ • • , an)Ra.

(a) If ai^a for l^i^n, then a^ajfor i^j.

(b) If i^ki< ■ ■ ■ <km-¿n, m^2, then (ak¡, • • • , akm)Ra.

(c) If a^a¡ ^c¿ /or l^t^w, tóe« (ai, ■ • ■ , a¿)Ra provided

('Eu a¡, Ev a¡)T for every nonempty U, VQ [l, •••,»] smcA ¿äoJ

j<kforjEU, k(=V.

(2.5) Theorem. 7/ (o^, • • • , a„)Ra, then (ait ai+i + • ■ ■ +an)Ra

for every 1 = 1, • ■ • , n— 1, a«d conversely, provided (a¿, ^v a,)T for

every nonempty FC [* + l, • • •, «].

Proof. The forward implication is immediate. The reverse is obvi-

ous   for   w = 2.   Suppose   it   holds   for   q^n — 1   where   «Sï3.   Let

(a¿, ai+i + • • • -\-an)Ra for i=l, ■ • • , « — 1 and let £/, FC [l, • • • , «]

such that U, V are nonempty and j<k for/£ Z7, &£ F. Denote t/ by

[jii • • • ,ju] and F by [ki, • • • , kv], where, without loss of general-

ity, ji< • • ■ <ju<h< ■ ■ ■ <K- Then by (2.4.c),

(aJi> ah+i + • • • + ak,)Ra       for i = 1, • • • , u

and

(aki, aki+1 + • ■ • + aK)Ra        for i = 1, • • • , v — 1.

In case Z7+ 7?¿ [l, • • • , n], it follows from the induction hypothesis

that (ah, ■ ■ ■ , aju, akl, • • ■ , akv)Ra, whence (^u ait ^v a^R*. Let

£/+ F= [l, • • • , «]. From the above argument,

Í a* + • • • + %», X) «¿J ä..

and by hypotheses, (aiv aJ2+ ■ • • +a,-u+ J^y a¡)Ra. Thus (2.1.b)

yields ( J^r/ a¿, ^v ai)Ra. Hence the reverse implication holds for

q = n and the result follows by induction.

(2.6) Theorem. Let R satisfy the intersection property. If

(ai, • • ■ , an)Ra, then (J^u o,-)(^ a<) = Huv a,- /or ei>ery C7, F

C[l, • • • , «] smcä /Aöi UV^Q and j<k<m for jEU-UV,
kE.V-UV,m<EUV.

Proof. Let 17= £/-£/7, X=7-i77. Then by the hypotheses,
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( Zx ai, Euv ai)Ra, ( Ew ait Zx ai + Zcv a,i)Ra, whence

( Eu a¡)( J2v a¡) = ( J2w at + Euv a¡)( Zx a(+ J^uv a¡) = J^uv a{ by

virtue of the intersection property.

(2.7) Lemma.    Let    R    satisfy    the    intersection    property.    If

(01, • • • ,an)Ra, £7+7= [1, •••,»], UV=@,then ( Ztr «<) ( £v «<)

= (an)(J2u ai)(J^v a¡).

Proof. Let U, 7?¿@ and let 1£Í7. Partition the set [l, • • • , n]

with sets JFi defined so that W2i-iCU, W2iCV, and j'<k' for

J'ElWj, k'ÇzWk, j<k. (The existence of such a partition is readily

proved inductively.) Then l£I7i and for some m, nÇzWm. The result

is immediate for m = 2; let m^3. Define b¡= ZiFj a» for í^j^m.

Then ( 2> ai) ( T,v *>) = ( 2> <n) (bx + £? h) (h + É" fc) ( ¿y ax)
= (YjU «»HZ? °ù(Ev ai)j the last equality holding by virtue of the
intersection property. For w^4, let 3^q<m. Then

1 g+l      / £/

or / ,y öj according as q is even or odd. Thus

(?*)(=h)(?*)

-d^XMp*)-5+

Therefore

( Z! a» ) ( Es¡) = ( X) a¿) (*») Í Z) <*■ ) •

Let Ar=PFm— [m] with X¿¿@; otherwise, the proof is complete. Then

(Z™"1 ó¿+an) = Z^ et i or Zf a¿ according as m is even or odd,

whence

=  (   Z) 0¿ ) (   Z) °¿ +  an J (    Z) «1  +  an J (    Z) «> J

=   (    Z) a» ) («») f    E a» ) •
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Hence

( Z)«>j( Z)a¿) = (<*»)( Eai)( Z)«ij-

(2.8) Theorem. Leí R satisfy the intersection property. If

(d, • • • , an)^o, ¿Aera /or nonempty disjoint U, 7C[l, • • • , n],

(Euaù(Jlvai)=a.

Proof. The result is immediate for n = 2. Suppose it holds for

q-^n— 1 where w^3. Then it holds for Z7+ V¿¿ [l, • • • , n], with an

application of (2.4.b). Let U+V= [l, • • • , n\. From the lemma,

( Eu ai) ( Ev o,i) = (an)(Eu ai) ( Ev a,-) • Let « £ 7. Then for 7 = [n ],

(Eua-i)(Eva%)=CL by definition, and for V^[n], (Eu O(Ev aï)
= (a»)(Zf öi)(Z^ a¿) =flZf at = a by the induction hypothesis.

Similarly, for »£ £/, ( Zu a<)( Z^ a») =ö- Hence the result holds for

n = q and the proof is complete.

(2.9) Definition. Define (au ■ ■ ■ , an)Ra (read (au ■ ■ ■ , an) sym-

metrically R-independent over a) to mean (a¿„ • • • , ain)Ra for every

permutation (ii, ■ • • , in) of the integers [l, • • • , »J.

(2.10) Corollary, (a) The relation Ra is symmetric, (b) If

(ai, • • • , an)Ra, then (au ■ ■ ■ , an)Ra.

(2.11) Theorem. If (a¡, ■ ■ ■ , an)Ra, then (ajt Z^ia¿)-^" for

IjStj&n, and conversely, provided (a}-, Ev ai)T for every nonempty

7C[l, • ■ • , n] such thatjQV.

Proof. This follows from (2.5) in a manner similar to the corre-

sponding result in [5].

(2.12) Theorem. Let R satisfy the intersection property. If

(au ■ ■ ■ , an)Ra, then (Eu a¡)(Ev ai)=Evv a, for every U, V

C[l, • • • , n] suchthat UVp^Q.

Proof. Let U<X.V and V<tU. Then let U-UV= [iu ■ ■ ■ , iu],

V— UV= [ji, • • • , jv], UV= [h, • • • , kw], where the im, jm and km

are distinct. Define

'«,•„ for 1 á *» á «,

ôm = ■ a,-m_u for u + 1 ^ m ^ u + v,

.#*„_„_„        for m + p + 1 ^m^u-\-v-\-w.

Then (bu • • • , K+v+w)Ra by (2.9) and (2.4.b). Also

U' — [l, • • • , U, U + V + 1, • • • , M -f- v + w]
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and

V = [u + I, ■ ■ ■ , u + v + w¡

satisfy the hypotheses of (2.6), whence

(ZIMT,*) = ( E b)( E b) = E ii - E ai.
\    U        / \    V        I \   U'       / \   V        / U'V uv

In the remainder of this section, some results are stated for R

symmetric at a. The proofs of these results are similar to those of

the corresponding results in [S] and will be omitted. In case R were

a symmetric relation, it is evident that R would be symmetric at a

for every a£L. If R is symmetric at a, then the relation Ra is sym-

metric, or equivalently, (b, c)Ra if and only if (b, c)Ra.

(2.13) Lemma. Let R be symmetric at a. If (c, b, d)Ra, then (b, c, d)Ra.

(2.14) Theorem. If R is symmetric at a, then (ait ■ ■ ■ , an)Ra if

and only if (ai, ■ • ■ , an)Ra.

(2.15) Corollary. If R is symmetric at a, then (ai, ■ • ■ , an)Ra if

and only if ( Eu ai,   Ev at)Ra for  every  nonempty disjoint   U,   V

C[l, •••,»].

(2.16) Theorem. Let R be symmetric at a and let bi, ■ ■ ■ , bm£.L

wherem^2.If(ai, ■ • • ,an)Ra,(bi, ■ • • ,bm)Ra and (Zïa«> Eibi)R<»

then (ai, ■ ■ ■ , an, bi, ■ ■ ■ , bm)Ra.

(2.17) Corollary. Let R be symmetric at a and for 7=1, ■ ■ ■ , n,

let m,^2 and a^-QL for i=\, • ■ ■ , m,-. If (cti,-, • • • , amjj)Ra for

7 = 1, • • ■ , n and if (ET aa< ' ' ' > ZiT" ain)Ra, then

(flu, ■ • • , amii, • • • , din, ' ' ' i amn„)Ra.

3. Quasi-modularity relations. In the study of quasi-dual-ideals,

the relations of weak modularity, as denoted by Wilcox [7], and

quasi-modularity, as denoted by the author [3], arise with properties

similar to those of ordinary modularity. In this section the material

of §2 is applied in an abstraction of these relations.

(3.1) Definition. A nonempty subset 5 of L is a quasi-dual-ideal

(q.d.i.) if
(a) x£5', y^x implies y£5;

(b) x, y £5, (x, y)M implies xy£5.

The smallest q.d.i. containing a set T (or elements a, b, c, • ■ ■ ) is

denoted by {t} (or {a, b, c, ■ • ■ )). The set of all q.d.i. is £ and

the set of all principal q.d.i. (of the form  {a}) is S. For a, ß££,
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a^ß means «D/3, aVJß — a-ß and aC\ß= {a-\-ß}.

It is useful to note that the principal q.d.i. of L coincide with the

principal dual ideals of L. For the next corollary and for all state-

ments with reference to £ in the remainder of the paper, it is assumed

that l.u.b. 7 = 1 exists.

(3.2) Corollary. The set £ is a complete lattice with respect to ^ ;

the lattice operations are VJ, C~\, and L and {1} are the zero and unit

respectively. If (b, c)M, \b, c\ = {be). The lattice L is isomorphic to

the set S, a lattice subset (not necessarily a sublattice) of £, under

a—>{a).

Proof. In S, l.u.b. [{a}, {b}]={a+b} and g.l.b. [{a}, {b}]

= {ab}. The isomorphism now follows and the remainder is immedi-

ate.

(3.3) Definition. Let QCLXL. Then Q is a quasi-modularity

relation means that Q= [({»}, {c}); (b, c)Q] is a modularity relation

under SXS in £. For Q a quasi-modularity relation, Q is said to

satisfy the intersection property (to be symmetric at a, for a££) if

Q satisfies the intersection property (if Q is symmetric at a) in £.

(3.4) Definition. Let Q be a quasi-modularity relation. For

»¡£2, Oi, ■ • • , o„£7 and a££, (au ■ ■ ■ , an)Qa (read (au ■ ■ ■ , an)

Q-quasi-independent over a) means ( {Oi}, • • • , {a„} ) Q„ where Q is

defined as in (3.3).

(3.5) Corollary. If (au ■ ■ ■ , aH)Qa, then (Eu ait Ev at)Q,

{ Eu ai, Ev ai] —a for every nonempty U, V(Z [l, • • • , n] such that

j < k for j £ U, k £ 7, and conversely.

The corollary shows the analogy between Q-quasi-independence

over a q.d.i. of 7 and i?-independence over an element of 7 as defined

in (2.3). The results of the independence theory of the previous sec-

tion may be applied to Q, yielding a corresponding theory for Q. If

one keeps in mind the equalities {oj U{c} = {o+c}, {o}P\{c|

= {b, c] and that a^{a} means a£a, the independence theory for

Q may be stated free of the notation of the lattice £.

4. Examples. An example of a modularity relation is obtained

from a special case of relative modularity, the latter being a relativ-

ization of ordinary modularity.

(4.1) Definition. For SC.L, b, cElL, (b, c)Ms (read (b, c) modular

relative to S) means (a-\-b)c = a-\-bc for every a£5 such that af^c.

Evidently, M=Ml- In addition, 717s satisfies many of the proper-

ties of M, some in a modified form. In particular, the next lemma is

of interest.
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(4.2) Lemma. If (b, c)Ms, b'^b, c'^c, b'c' = bc, then (b', c')Ms.

Proof. Let a^c', a£5. Then (a+b')c'^(a+b)c = a + bc = a + b'c',

whence (0', c')Ms since the reverse inequality (a+b')cr^a + b'c'

holds universally for a^c'.

(4.3) Theorem. If S is join-closed, then R = (SXL)- Ms is a

modularity relation under S XL.

Proof. Part (a) of (2.1) readily follows with an application of

(4.2). For Part (b), let (c, d)R, (b, c+d)R, b(c+d) =cd. Then b, c£5,
(b+c, d)£SXL and b(c+d)Sc. Now let a^d, a<=S. Then a+c£5,

a+c^c+d and

(a + (b + c))d = ((a + c) + b)(c + d)d = ((a + c) + b(c + d))d

= (a+ (c + b(c + d)))d = (a + c)d

= a + cd¿a+(b + c)d.

Thus (b+c, d)Ms, whence (b + c, d)R. Also

(0 + c)d = (c + b)(c + d)d = (c + b(c + d))d = cd.

(4.4) Theorem. If S is join-closed, then R = (SXS)- Ms is a modu-

larity relation under SXS satisfying the intersection property.

Proof. The proof that R is a modularity relation under SXS is

essentially the proof of (4.3). For the remainder, let (c, d)R, (b, c+d)R,

b(c+d)=cd. Then dGS, b(c+d)^d and since (b, c+d)Ms, (b+d)

■(c+d)=d + b(c+d)=d.

Two examples of quasi-modularity relations are now considered.

(4.5) Definition. For 0, c£7,

(a) (b, c)M0 (read (6, c) weakly modular) means {a + b, c} = {a}

W{b, c} for every a^c;

(b) (b, c)Mt (read (0, c) quasi-modular) means (ô, c)Ms where

S={b,c}.

(4.6) Theorem. The relations M0 and Mq are quasi-modularity

relations satisfying the intersection property.

The proof of this theorem is omitted. It is of interest to note that

always il7oOT7a and that examples of left-complemented [ó] lattices

exist for which the inclusion is proper.

To show that the notion of a modularity relation is more general

than ordinary modularity, one may consider the relation Q in £

corresponding to Ma, which is incidentally (SXS)- M§. In case 7 is

not a modular lattice, this Q, although a modularity relation, is not

ordinary modularity for £.
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