
SUMS OF STATIONARY RANDOM VARIABLES1

ENDERS A. ROBINSON

A sequence x(t) (— °o </< », / an integer) of elements in Hilbert

space is called stationary if the inner product (x(t+s), x(t)) does not

depend upon t. If the Hilbert space is 72 space with probability meas-

ure, then x(t) is a random variable and the sequence x(t) ( — =o <¿ < oo )

is called a second-order stationary random process. Let X be the

closed linear manifold spanned by all the elements of the stationary

process. Then Kolmogorov [l ] has shown that the equation x(t) U

= x(/ + l), — oo <t< co, uniquely determines the unitary operator U

with domain and range X. Using the von Neumann [2] spectral

representation of U, we obtain the spectral representation of the

random process

x(t) =  I     e2riutdx(0)E(u), - » < t < co.

The von Neumann [3] ergodic theorem, in the framework of Khint-

chine [4], is applicable, and shows that the average E'ix(t)/n con-

verges in the mean to the random variable x(0){E(0 + )—E(0 — )] as

w—>oo. In this paper we consider sums instead of averages; that is,

we consider E"x(t), and establish the following theorem.

Theorem. Let the random variables x(t) (— & <t< &, t an integer)

be a second-order stationary random process with spectral distribution

function F(u). For variance j E"x(t)\ t° be bounded for all positive

integers ra, each of the following two conditions is necessary and sufficient:

(1) f    sin-2 wudF(u) < °o.

(2) There is a second-order stationary random process

y(t) (—00 </<cc) satisfying y (t)—y (t + \)=x(t).

Proof. (Necessary conditions). We are given that variance

{ E"x(t)} <B for all positive integers ra. Without loss of generality

we assume that the x(t) are centered so that their mean values are

zero. Then
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variance

From the spectral representation we have

£*W =   I     e2"'"-—dx(0)E(u),
.5 1 - e2xiu

so

/    n \ /» .5        1   _   «2iriun   2

variance < 52 *(') ^ =   I      "1-r~ dF(u)
lil       J-.5  | 1 - e2""|2

where F(u) =\\x(0)E(u)\\2, —.5^u^.5, is the spectral distribution

function. Hence we have

(A        1 (  r °-      /• -6) sin2 xrara
5 > variance < £ *(/) > =  <   I      +  |     > —-dF(u)

\   i ! \J-.t      J o+ '   sin2 tu

+ ra2[F(0+) - F(0-)]

which shows that F(0+) — F(0 — ) must vanish. Moreover, we have

1    *   (  f °-        r 5) sin2 ^MW
5>-E] +       [-TT— ¿f(«)

An=ilJ_.5       J[+;   sin2 ttm

=  \\       +  I      >■—52 (-cos27tm»)    sin-2 irudF(u).
U_.5      J0+/Lv„,i\2        2 /J

Clearly the limit of the expression in brackets, as A7—»a>, is 1/2, so

/Í.ssin-2TMáF(ra) is finite. Q.E.D. (1).

The distribution function F(u) defines a Lebesgue-Stieltjes measure

on the real line segment — .5^w^.5. Let W denote the 72 space of

complex-valued measurable functions $(ra) defined on —.5 ;£«;£.5

for this measure. Define a correspondence between an element x of X

and an element $>(«) of W by

x =   I     4>(«)áa;(0)£(«) <-> *(«).
*-'-.5

Then Stone [5] and Kolmogorov [l] have shown that this cor-

respondence establishes an isomorphism between X and W that pre-

serves inner products. The function e2Tiut/(\—e2iriu) belongs to W

since

/.5 I       oliciut 2 1       /» .6

-   dF(u) = — I      sin-
-,5ll - e2*iu                   4 J_.6

2 irudu < oo .
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If we define the element y(t)  of X by the correspondence y(t)

<_>e2xi«</'(1_g2Ti») we see tnat

y(t) - y(t + 1) <->-= e2riut.
J   _   g2iriu

But by the spectral representation, we know that x(t)<r+e2riut, and

hence we have y(t) — y(/ + l) =x(t) for all integers t. Since

-.5    I 1 — e2Tm|2

1   f-6
_  _   I        gî*iu, sm-2 TU¿plu)

4J-.5

depends only on 5, we see that y(¿) is a stationary random process.

Q.E.D. (2).

Proof. (Sufficient conditions). Let condition (1) of the theo-

rem be given. Since

C   "         "I          r 6 sin2 irun Ç -6
variance < ¿_, x(t) } =   I      -dF(u) g   I      sin-2 irudF(u)

\     1 ) J -.5    Sin2 TTM J-.5

we see that the variance is bounded. Q.E.D. (1).

Let condition (2) of the theorem be given. Then ||y(<)|| is a finite

constant. Because Eîx(t)=y(l)—y(n + l) we have ||52"*W||

á||y(l)||+||y(ra + l)||, and so variance { Ei x(t)} =|| £ï x(í)||2 is

bounded. Q.E.D. (2).
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