28 L. A. HOSTINSKY [February

REFERENCES

1. R. Baer and C. Williams, Splitting criteria and extension types, Bull. Amer.
Math. Soc. vol. 55 (1949) pp. 729-743.

2. L. A. Hostinsky, Endomorphisms of lattices, Duke Math. J. vol. 18 (1951) pp.
331-342.

3.
755.

4. , Loewy chains and uniform splitting of lattices, Proc. Amer. Math. Soc.
vol. 5 (1954) pp. 315-319.

, Direct decompositions in lattices, Amer. J. Math. vol. 73 (1951) pp. 741-

THE PENNSYLVANIA STATE UNIVERSITY

FINITE DIMENSIONAL CENTRAL DIVISION ALGEBRAS
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1. Introduction. Let D be a division algebra over its center C. Let
D[x] be the ring of all polynomials in a commutative indeterminate
x with coefficients in D. The present note contains a characterization
of the division algebras D which are finite over their center with the
aid of the polynomial ring D [x].

One characterization is the following:

THEOREM 1. (D: C)=n?< o if and only if every primitive homo-
morphic image of D[x] is a complete matrix ring An, h<n over a divi-
sion ring A.

With this result at our hand we utilize recent results on pivotal
monomials to show:

THEOREM 2. (D: C) =n*< «» if and only if for any two polynomials
fx), g(x)ED|x] the polynomials 1 —g(x)f*(x) and f(x) do not have a
nontrivial left common divisor.

The fact that Theorem 2 gives a characterization of the finite di-
mensional algebras, means that:

COROLLARY 1. If (D: C)>n? then D|x] contains two polynomials
g(x), f(x) such that 1 —g(x)f*(x), f(x) possess a nontrivial left common
divisor. (Stmilar result for right divisors.)

We conclude the paper with some remarks on left and right prin-
cipal ideal rings with primitive images which are finite dimensional
matrix rings of bounded degree over division rings.

Received by the editors May 5, 1959.



1960] FINITE DIMENSIONAL CENTRAL DIVISION ALGEBRAS 29

2. Proof of Theorem 1. First we determine the structure of the
primitive ideals and images of D [x].

It is well known that D[x] is a principal right and left ideal ring
and every (two-sided) ideal P in D[x] has the form: p(x)-D[x]
=D|[x] p(x) =P, where p(x) can be chosen, if not zero, to be p(x)
=x"+axml4 - - - 4a, with a;ECenter C of D (e.g. [1, p. 38]).

The primitive ideals of D[x] are the maximal ideals contained in
maximal right ideals. Now, I =f(x)D [x] is a maximal right ideal in
D|[x] if and only if f(x) is irreducible in D [x] and it follows, therefore,
by [l, Chapter 3, Theorem 13] that the maximal two sided ideal P
contained in I is either zero or a maximal ideal in D [x]. The latter is
clearly equivalent to the fact that P=p(x)D [x] is either zero or p(x)
is an irreducible polynomial in C[x]. Let C(£) be the algebraic field
extension obtained from C by adjoining £&—a root of the polynomial
p(x). Then, the isomorphism:!

D[x]/p(x) D[z] = D ® Clx]/p(x)C[x] = D ® C(¢)
imply:

LEMMA. Every primitive homomorphic image of D [x] is either D[x]
or isomorphic with DQ® C(£) for some simple algebraic extension C(£)
of C.

Clearly, by ranging over all extensions C(£) we obtain all primitive
images (with the possible exception of D [x]).

We are now in position to prove Theorem 1:

Let (D: C)<n?< »; then by classical results on central simple
algebras (e.g. [1, Chapter 5]), D® C(§) is also a central simple algebra
of dimension <#? over its center; and, consequently, it is isomorphic
with 4, for some division algebra 4 and for r <n. Furthermore, in
this case every nonzero right ideal contains nonzero two sided ideal
[1, Chapter 3, Theorem 15] which means that D [x] cannot be primi-
tive. This proves the necessity of the conditions of Theorem 1.

To obtain the sufficiency, we consider the maximal right ideal
(x—a)D[x] =1 for each aED. Let P =p(x)D [x] be the maximal ideal
contained in I. Since P is also primitive, D[x]/P=A4, with r <% and
some division ring 4. Our first object is to show that deg p(x) =r.

Indeed, for every €D, u0, the right ideal (x—uau=')D[x]=1I,
contains P, since #P=PCu(x—a)D [x]=1I,. Furthermore, the inter-
section NI, for all €D is exactly P, since NI,DP and NI, is clearly
a two sided ideal. Now since D[x]/P=2A4, we can find 7 elements
U1, g, + -+, s such that D[x]DIulDIulﬂquD s DI -

1 All tensor products are taken with respect to C.
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NI, =P =P since the length of composition chain of right ideals in
I, isr. From this it follows that p(x) is the left common divisors of the
polynomials x —u.,aui?, and consequently deg p(x) =r. (Actually it
can be shown from the preceding chain that deg p(x) =7, but we do
not need this result.)

The completion of the proof of Theorem 1 is now as follows: from
the preceding arguments it follows that for every a €D there exists a
polynomial p(x) of degree =n with coefficient in the center C such
that x —a is a right divisor of p(x). Hence, p(a) =0. This means that
D is an algebraic algebra over C of degree <. It follows therefore
by a result of Jacobson [2] that (D: C) <#n?, and the proof is com-
pleted.

3. Proof of Theorem 2. It was shown in [3] that a necessary and
sufficient condition for a ring R that every primitive homomorphic
image of R is isomorphic with 4;, A<# is that A\* be a J-pivotal
monomial of R, [3, Theorem 4]. This means that for every r, yER
there exists sS&R such that:

(J» ry+s—ryser R,

In our case R=D|[x], this is equivalent to the fact that for every
f(x), g(x) ED|[x], there is k(x) €D [x] such that:

[ (®)g(x) + k(x) — fH(2)g(x)k(x) = f*+1(x)i(x)

for some t(x). This clearly implies that k(x) =f*(x)Ak(x), and since
D[x] is a ring without zero divisors, it is readily seen that the last
condition is equivalent to the existence of h(x), t(x) for every g(x)
such that:

@) g(x) + h(x) — g(@)f*(@)h(x) = f(2)1(x).

Next we show that (J) is equivalent to the condition that
1 —g(x)f*(x) and f(x) are relatively left prime, i.e. they do not have a
nontrivial common left divisor. Indeed, if (J) is valid then we deduce
from it that: g(x) =f(x)t(x) — (1 —g(x)f*(x))k(x), and if p(x) is a left
divisor of f(x) and 1 —gf™ then clearly it must be also a left divisor of
g(x) whereas 1—gf* and g have only trivial left common divisors.
Conversely, if 1 —gf* and g are left prime, then since D [x] is a prin-
cipal right ideal ring it follows that:

1= (@1 — g@)f(=x)alx) + f(x)b(x)

and thus (J) is valid with A(x) = —a(x)g(x), t(x) =b(x)g(x); from the
above arguments, Theorem 2 follows immediately.
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Corollary 1 follows now by a symmetrical application of right and
left arguments in Theorem 2, and Corollary 2 is evident.

The arguments of the preceding section can be carried over to any
principal right ideal ring R without zero divisor. Namely,

THEOREM 3. Every homomorphic image of a principal right ideal
ring R without zero divisors is isomorphic with a complete matrix ring A,
over a division ring if and only if for every two elements a, bER the ele-
ments 1 —ba™ and b are left prime.
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