A MARTINGALE INEQUALITY AND THE LAW OF
LARGE NUMBERS!

Y. S. CHOW?

In a recent paper [4], Hijek and Rényi have generalized an in-
equality of Kolmogorov to the following: If x;, %9, + - -, x,, are inde-
pendent random variables with

E(xk) =0
and
2
E(xk)<°°y (k=1,2,"',7ﬂ)
and ¢, ¢ = - -+ >0, for any €>0

(1) P{max ol 2+ -+ ge}§izc,fE(x,f).
m>E>1 e 7

The original Kolmogorov’s inequality [6] has been extended to a
martingale inequality by Lévy [8] and Ville [12] and later to a semi-
martingale inequality by Doob [3]. In this note we will extend (1)
to a semi-martingale inequality which contains Doob’s inequality as
a special case. As Kolmogorov's inequality is the key to the proof of
the law of large numbers for a sequence of independent random vari-
ables, we will use our inequality to prove a “law of large numbers”
for a martingale, which will be shown to include the extensions of
Kolmogorov’'s law of large numbers for independent random vari-
ables [7] made by Brunk [1], Chung [2], Kawata and Udagawa [5],
and Prohorov [11], and for dependent random variables made by
Lévy [8] and Lozve [9].

In the following (W, F, P) will be a probability space, ¢, ¢, - -
a nonincreasing sequence of positive numbers, xi, x5, - - - a sequence
of random variables, y.=x1+x.+ - - - +x, and F, the Borel field
generated by xi, %2, - - -, %% for each k, and for a random variable 2z
we put zt =max(z, 0).

THEOREM 1. Let (yi) be a semi-martingale relative to (Fy) [3, p. 294]
and €>0. Then
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eP{ max ¢y = 6} < aEG) + X aE(h — o)
2

m>k>1

+
@ B ij‘{m;:;- . cwk«}y’"dp

= ClE(}’T) + E CkE(}"l: - }’:—1)
2

- "'g; (@ = ) EGR) + cnEGm).

To prove (2), let

4 = {max ckykge},

m>k>1

Ar={ciyi<e for 1Sj<k; aye=e€}, and z=9; for 1<k=m. Then
A =UP A, and A, EF; for each k. Hence

eP(A) = e PANE X a| wdP =2 a f zdP
1 1 A Ap

1

= ¢1E(z1)) — 1 f z1dP + E Ck z2dP = c1E(z1)
W-4, 2

A
+ c2 f (32 — 21)dP — c2 f 2dP + X o | zdP.
W—A4, W—(4,U4,) 3 A

By the semi-martingale property, [a,u4su---u4s(Zk41—2:)dP 20 for
each k, then

eP(A) = c1E(z1) + c2E(z2 — 21) — ¢ f 2dP + X o | wmdP
W—(4,U4,) 3 Ag
= GlE(Zl) + CzE(Za - Zl) + Caf (23 — Zz)dP
W—(4,U4,)

— C3 f z3dP + E Ck % d P
W—(4,UA4,U4y) 4 A

A

v 2 aE@) + D aE@m — 1) — om f 2md P
2 w-

—A

IA

= aE(z) + E aE(m — 2-1).
2
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Thus the proof is complete.

If %1, x5, - - -+ are independent with mean zero and finite variance,
then (y}) is a semi-martingale relative to (Fi) [3, p. 294] and E(y?)
=E(x}+ - - - +x}), and therefore (2) reduces to (1). If ¢=1 for
each k, then ¢i—ciy1=0 and (2) reduces to Doob’s inequality [3,
p. 314].

As an application of Theorem 1 we have:

CoROLLARY. Let (y:) be a non-negative semi-martingale relative to
(Fx) and lim ¢, =0. If for some a=1 E(y5) < « for each k and

3) > GE(% — %) < ,
2

then

4) lim cxyr = 0 a.e.

Since (y§) is semi-martingale [3, p. 295], by Theorem 1 for €>0,
we have

eP {sup Yk = e} =¢P { sup cZyZ = ea}

k>n r>n

< GEGn) + X GE( — ye1).
n+1

By Kronecker’s lemma [9, p. 238] and (3),

lim c:E(y:) =0,
and then

lim P { Sup Ciyr = e} =
E>n
Hence (4) holds under the condition (3).

When (y:) is a martingale and E(y}) < « for each &, (y2) is a semi-
martingale [3, p. 295] and E(3}) =E(x})+ - - - +E(x}) [3, p. 92].
Therefore, if x;’s are uniformly bounded and ¢, =1/k the corollary
gives Lévy’s result [8, p. 252], and if @=2 the corollary reduces to
Lodve’s extension [9, p. 387] of Lévy’s result.

In the following, A will denote a constant, not necessarily always
the same, depending on « and B.

THEOREM 2. Let (yx) be a martingale relative to (Fy), lim ¢, =0,
azland 2=2B>0. If for 121,
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) E(] 3 = AE(Exi),
1
(6) z’_lcf“—p S 4, Z c:;fa'km_2 < Acg,
and
Q) > GE(| @™ < =,
1

then (4) is true,

In the proof we may assume that4,=1. By the Holder’s inequality,
®) E(| 3] £ Akt :Vl.‘ E(| x:|*).
By (8), (6) and Kronecker’s lemma,
lim ¢ E(| y,,l ) = Alim ak IE E(| x,lza)
< Ahmc,,ZE(lx.] M = 0.
Again by (8),

lza

) 0 k
S —aB(n™ s 4X @ - awk T Y E(| %)™
1 1 1

A E( %™ Y (o — a)t™
1 i

Now by (6)
Z (@ — g = TR D (kDT = ETY
i+1
<+ 4 Zci“k“ < a4l
i+1
Hence

= , 2 % % =~ 8 2
Y (o = a)E(| 5| £ 4 GE(| %] < «,
1 1
and (4) is true by the corollary.
If x;, 2, - + - are independent with mean zero, then (5) is satisfied
by an inequality due to Marcinkiewicz and Zygmund [10, Theorem
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13]. If there is a subsequence ¢, of ¢, such that 1<7r=c,/Cns,,
<r'<» and ¢;=A/k, then (6) is satisfied with 8=a+1, since for
Nk, <1 <mr, we have

a—1 2a—f
1 ¢ =S A
and
© 4 © © nj+1—1
2a a—2 2a a—2 2a 2 a—2
ak =2 ak = Cn; k
k=t nky J=kg k=nj

A

© ©
2a a—1 at+l a—1 a—1
A E Cn;Mjt1 = A Z Cnj Nnjy1Mit1
ko ko

r

= . 11 .
s4Y e s AcZ;j,‘(1+—+—2+~-)§ Acr,
ko r

a+1 a+1
=< Acnko.H < Ac; .

Therefore Theorem 2 includes the results obtained by Brunk, Chung,
Kawata and Udagawa, and Prohorov. It is easy to verify that (6) is
satisfied by ¢, =k~ for >0 and 8=2a— (a¢—1)/r>0, and by ¢, =k7*
where 8 is any positive number less than 2a. The last case, ¢, =k7%,
gives an example that the usual condition lim sup ci/cr1 < ® for
lim ¢xyr =0 a.e. for the independent random variable case is not neces-
sary.
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