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1. Introduction. Let K be the closed unit disc in the complex plane,

U be the interior of K, and T be the unit circle. Let Q, be the algebra

of all continuous complex valued functions on K which are analytic

on U. If ft|r is the algebra of restrictions to T of functions in Ct,

then d|r is a maximal closed subalgebra of C(T) (all continuous

complex valued functions on T) [8]. In this note we investigate to

what extent some of the classical boundary properties of analytic

functions generalize to arbitrary function algebras, and in particular

to maximal algebras. Specifically we shall look at possible generaliza-

tions of the following three theorems.

1. Fatou [4] : If E is a closed subset of T of measure zero, then there

is some /£ Q, which is zero exactly on E.

II. F. and M. Riesz [6]: If /6ft and/=0 on a subset E of V of

positive measure, then/=0.

III. Rudin [7] : If E is a closed subset of T of measure zero and/ is

any continuous function on E, then there is some function in ß

which agrees with / on E.

2. Assumptions. Let A be a proper closed (uniform norm) sub-

algebra of C(X) for some compact Hausdorff space X. Assume that

A separates points of X and contains the constant functions. Assume

also that A is an essential algebra on X; i.e., that A contains no

proper closed ideal of C(X) [l]. Let 2 be the maximal ideal space of

A and assume that X is a proper subset of 2. We will consider the

functions in A as being defined on 2 and use A \ X for the restrictions

to X, and in general A \ E for the restrictions to any closed set E in

2 or X. A zero set is any set of the form {xG2: f(x) = 0} for some non-

constant/6^4. A maximum set is any set of the form {x £2 :f(x) —\\f\\}

for some nonconstant/6^4. Every maximum set is obviously a zero

set. A representing measure will be a positive regular Borel measure

on X such that for some x£2~J5f and every f(E:A, ffdm =f(x). There

is a representing measure corresponding to each point of 2~X [2].

For the example d of continuous analytic functions, the maximum

sets and zero sets contained in T are exactly those closed sets of

measure zero (Theorems I and II above and Lemmas 1 and 2 of

[7]). The representing measures are the Poisson measures on V.
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3. Some boundary theorems.

Lemma 1. If E is a maximum set of A, then there is some gÇzA such

that g{x) =||g|| =1 if x£zE, and \g(x)\ <1 if x££.

Proof. Since £ is a maximum set, there is some /£^4 such that

E = (x:/(x) = ll/ll =1}. Let g = (1/2)(1 +/); then g e A,
£={x:g(x)=||g||=l},and \g(x)\ <1 ifx££.

Theorem 1. If E is a maximum set for A, then A \ E is a closed sub-

algebra of C{E).

Proof.2 If J= {/£¿4 :/=0 on E], then / is a proper closed ideal

of A. It follows [5, p. 68] that vl//is a Banach algebra in the quotient

norm: ||(/)|| =inf {¡|g|| : g£(/)}, where (/) is the coset of A/J con-

taining/. Since A \ E and A/J are isomorphic in an obvious way, we

obtain our result by showing that the quotient norm is the sup norm

in A | E. Let/ be any function in A, e any positive number, and g a

function in A such that g(x) = i if x£E, and |g(x)| < 1 if x££. For

sufficiently large n, \\g"f\\ <e+sup{ |/(x)| : x£E}. Since g"/£(/), we

conclude that the quotient norm for (/) is the sup norm for/|.E.

The corollary below gives an extension of Rudin's Theorem III

to a general maximal function algebra.

Corollary. If A \ X is an essential maximal closed subalgebra of

C(X), and E is a maximum set for A, then A | E = C(E).

Proof. If A\X is an essential maximal subalgebra of C(X), then

A I E is uniformly dense in C(E) for every proper closed subset E of

X [l]. Since A \E is dense and closed in C(E), A\E = C(E).

The next theorem and corollary provide a partial converse of

Theorem 1, and in the case of the algebra & exactly the converse of

Rudin's theorem.

Theorem 2. If E is a closed subset of 2 and .¿4|E = C(.E), and

Xo£2'~E, then there is somefÇ^A such thatf—0 on E andf(xa)^0.

Proof. Suppose that every function in A which is zero on E is

zero at x0. Then for every fGA, f(x¿) is uniquely determined by

f\ E, and we can talk unambiguously of f(x0) for every f£.A | E

= C(E). Thus evaluation at x0 provides a (necessarily continuous

[5, p. 69]) homomorphism of C(E). This contradicts the facts that

any homomorphism of C(E) can be realized as evaluation at a point

of E, and A separates points of 2.

2 Theorem 1 is due to J. L. Kelley and replaces a weaker form of the theorem dis-

covered by the author.
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Corollary. If A \ E = C(E), then E is contained in a zero set.

In Theorems 1 and 2 we replaced the notion of zero measure on the

unit circle with the ideas of zero set and maximum set of the algebra.

The next two theorems relate the zero sets and maximum sets with

the Poisson-like representing measures. In the algebra Û, a subset E

of T has measure zero if and only if m(E) = 0 for every representing

measure. Theorems 3 and 4 can be regarded as generalizations of the

Riesz Theorem of §1.

Theorem 3. If Eis a maximum set for A, and ECZX, then m(E) = 0

for every representing measure m.

Proof. Let m represent the point x0£2~.X", so that/(x0) =Jxfdm

for all/£^. Let g£¿, g(x) = l if x£E, and |g(x)| <1 if x£2~£.

Then g"(x0)—>0. On the other hand, the functions g" converge point-

wise on X to the characteristic function of E, so g"(x0) =Jxgndm

-^m(E).

We note that if A is an essential maximal algebra on X, the condi-

tion EQX is automatic for a maximum set E by [2].

Let Cb(X) denote all continuous real valued functions on X.

Theorem 4. // the real parts of functions in A are uniformly dense

in Gr(X), and m represents Xo£2~X, and m(E)^0, andfÇ^A, and

/=0 on E, thenf(xo) =0.

Proof. (A modification of the proof of the Riesz theorem given in

[3, p. SO].)
If m(E) = l, then it is clear that /(x0)=0, so we assume that

0 < m(E) < 1. Let e be positive, and B so large that

11/11 exp{ -B/[l-m(E)]} <e. Let cj>(x)=B/m(E) if x££, and <t>(x)
= — B/[l— m(E)] if x£X<~E. Then ¡<f>dm = Q. Let F be a neighbor-

hood of E and w a continuous real function on X which equals <f>

on E and off V, and takes intermediate values on y~E. Note that

fwdm— f(w—0) dm =Jv~e('w~4>) dm. We can therefore choose F with

m(V~E) so small that \fwdm\ <e. In addition we require that

m(F~E) be so small that Jyr^E\f\éwdm<e. By the choice of B, we

have Jx~v\f\eWdm<e. Now let u be the real part of a function in

A with u close enough tow that | m(xo) | —\fudm\ <eand/x~#|/|eU^Wí

<2e. Let u+iv^A, with v(x0)=0, and let g=eu+iv. Then g£yl,

|g| ~eu, and g(x0) =eu(lo)>e_e. Hence

| f(xt>) |   Ú  | /(*o) | g(x0)e' = e6    I  fgdm   è e< l   \f\  \ g\

= ee I   |/| eudm = ee | \f\eudm ^ 2eee.

dm
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Since e is arbitrary, f(x0) = 0.

Corollary. If the real parts of functions in A are dense in Cr(X),

and m(E)>0for every representing measure m, then every function in A

which is zero on E is identically zero.

Corollary. If the real parts of functions in A are uniformly dense

in Cr(X), and there is a zero set F such that EC.FCZX, then m{E) = 0

for every representing measure m.

Comment. The fact which is conspicuously missing from these

theorems is some analogue of Fatou's Theorem I. For example, the

last corollary above assumes that F is a zero set (in 2) instead of a

set of the form {x£X:/(x) =0J.
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