
ON COMPLETE SEMIMODULES1

V. RAY HANCOCK

1. In the first theorem of [3], Wiegandt incorrectly states that a

semimodule is complete if and only if it is divisible. (See §2 for defini-

tions.) In this paper we show (in §3) that his theorem should read:

a semimodule is complete if and only if it is a divisible group. Divisible

semimodules which are not necessarily groups are discussed in §4, in

connection with Wiegandt's second theorem. It is shown that a

weakly integrally closed, divisible semimodule can be expressed as

the direct sum of a divisible (abelian) group and a cone in a rational

vector space.

The author wishes to acknowledge his gratitude to Professor A. H.

Clifford for his many valuable comments.

2. Following Rédei [l] and Wiegandt [2; 3], we shall use the

following definitions.

A semimodule is a commutative, cancellative (Wiegandt: regular)

semigroup with identity, which we shall write additively.

If Q, S, and T are semimodules, then T is called a Schreier semi-

module extension of S by Q if 5 is a subsemimodule of T and for each

aEQ there is a unique element ua of T such that: (1) Uo = 0, (2) the

cosets ua+S, aEQ, form a partition of T, and (3) ua+UbEua+b+S.

Note that if on the set {ua+S\aEQ\, which we denote by T/S, we

define the binary operation o by (ua+S) o (ub+S)=ua+b+S, then

T/S=:Q under the mapping ua+S—>a.

If T is a Schreier semimodule extension of 5 by Q then (3) implies

the existence of a function 0: QXQ—*S, called the factor-system of

the extension, such that ua+Ub=ua+b+4>(a, b). This function 0 satis-

fies the three laws:

I. <b(a, 0) = 0,

II. 0(a, b) = <p(b, a),

III. 0(o, b + c) + <b(b, c) = <b(a + b, c) + <b(a, b),

for all a, b, c in Q. I reflects the condition w0 = 0, II the commutativity

of T, and III the associativity of T. If we define 4- in QXS by

IV. (a, a) + (b, ß) = (a + b, <b(a, b) + a + ß),
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then Ua+ct—*(a, a) induces an isomorphism T=QXS. Conversely,

if Q and S are semimodules and if there exists a function 0: QXQ—>S

satisfying I, II, and III, then the semigroup T defined on QXS by

IV is a Schreier semimodule extension of S by Q with ua = (a, 0) and

with each element a of 5 "identified" in the usual way with (0, a).

A semimodule is called complete if it is a direct summand of every

Schreier semimodule extension of itself. A semimodule 5 is called

divisible if for every aES and every natural number ra there exists

xES such that nx = a. If, moreover, x is uniquely determined by

ra and a, for every ra and every a, then 5 is called uniquely divisible.

We shall use the following notations: If 5 is a semimodule, S* shall

denote the difference-group2 of 5 and U(S) shall denote the group of

units3 of 5. We shall use N, N0, R, and R0 to denote, respectively, the

sets of all natural numbers, all non-negative integers, all positive ra-

tionals, and all non-negative rationals.

A semimodule S is called weakly integrally closed if 5 contains every

element a* of S* for which there exists ra in A^ such that na* is in S.

We shall use the term cone to signify a convex subset C of a rational

vector space such that if pEC then RopQC but -RpnC = \3 (the

empty set).

3. Theorem 1. If T is a Schreier semimodule extension of a semi-

module S by a semimodule Q such that T* is the direct sum D*@S* for

some group D*, and if D denotes the projection of T into D*, then:

(1) D* is the difference group of D (thereby justifying our use of the

symbols D* and D) ;

(2) each element of D is in one of the cosets ua + S* (aEQ) and each

such coset contains exactly one element of D ;

(3) if f: Q—>S* is the function for which va = ua+f(a) is that unique

element of D in ua+S*, then f(0) =0 and

4>(a,b) =f(a + b) -f(a) - f(b);

(4) T = D®Sifandonlyiff(Q)^U(S).

Proof. We first observe that from the definition of D, clearly

rçi7>es*.
(1) If D' denotes the difference-group of D then DQD* and

TQD®S* imply

D' Ç D* Q D* + S* = T* Ç (7> 8 S*)*=   D' ® S*,

2 Every semimodule can be embedded in a group, unique to within isomorphism,

the elements of which are each expressible as the difference of two elements of the

semimodule.

3 By a unit of a semimodule 5 we mean an element of S which has an inverse in 5.
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so that D*CZD' since 7>*Pi5*={0}. Thus D*=D'.

(2) If xED, then there exist tE T, ct*ES* such that t—x+a*, and

there exist aEQ, ßES such that t=ua+ß. Therefore we have (in T*) :

x = / — a* = ua + ß — a* E Ua + S*.

Conversely, since uaETCD®S*, there exist x£7>, a*ES* such that

ua = x+a* and so x = ua — a*E(ua+S*)C\D. If x = ua+a* and

y = Ma-f-/3*arebothin (ua+S*)r~\D, then ua=x-a* =y-ß*ED®S*,

whence x=y.

(3) From vaEDQD*QD*®S* we have va +Vb = va+b, and so

ua+b+<p(a, b) =Ua+Ub = va+vb—f(a) —f(b) =ua+b+f(a + b) -f(a) —f(b).

Thus 0(a, b)=f(a+b)-f(a)-f(b). Also, DC\S= {o} implies v0 = 0;
so that from Uo = 0 we have/(0) =0.

(4) H f(Q)QU(S), then va = ua+f(a)ET+SQT for every aEQ,
and hence DQT and D+SQT. On the other hand, for each tET

there exist aEQ, ctES such that t = ua+a = va— f(a)+aED + S; and

hence rç7>+5. From D + SQD*®S* we have T = D+S = D®S.

Conversely, if T = D®S, then there exists a function g: Q—>S such

that ua = va+g(a) for each aEQ- But then ua+0 = ua=va+g(a)

= ua+f(a)+g(a), so that f(a)+g(a) =0. Thus/(a) E £/(S) provided

f(a)ES. From vaET, we have ¡^, = «¡,+0: for some &G(?, «£5. How-

ever, the cosets &„+•$* and Ub + S* are either disjoint or identical.

Since they both contain va, they must be identical and hence ua=Ub

and f(a) =aES. Q.E.D.

Corollary 2. Any subgroup S of a semimodule T which is a direct

summand of T* must also be a direct summand of T.

Proof. If 5 is a group, then the cosets of S in T are either disjoint

or identical (cf. Rédei [l]), and therefore form a partition of T for

any choice of representatives. Thus F is a Schreier semimodule ex-

tension of 5 by some semimodule Q. By hypothesis, T* = D*@S* for

some group D*, and for the corresponding function/,

f(Q) QS* = S = U(S).

Hence, by Theorem 1, T = D®S. Q.E.D.

Corollary 3. An abelian group S is a direct summand of every semi-

module T in which S is a subgroup if and only if S is divisible.

Proof. The necessity of divisibility is an immediate consequence

of the corresponding group theorem. Conversely if 5 is a divisible

subgroup of a semimodule T then S ( = S*) must be a direct summand

of T*. We can therefore apply Corollary 2 to obtain the conclusion.

Q.E.D.
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Theorem 4. If T is a Schreier semimodule extension of a semimodule

S by a semimodule Q with factor-system <p : Q X Q^>S, then S is a direct

summand of T if and only if there exists a function f; Q—+U(S) such

thatf(0)=0 and <p(a, b) =f(a+b) -f(a) -f(b) for all a, bEQ. If S is a
direct summand of T, then <p(QXQ)Q U(S).

Proof. If S is a direct summand of T, say T = D®S, then T*

= D*®S*, and, by Theorem 1, the function / exists and has the

properties specified.

Conversely, if the function/exists and has the properties specified,

let va = ua+f(a) for each aEQ, and let D= {va\aEQ\- Then va+Vb

= ua+ub+f(a)+f(b) =ua+b+(t>(a, b)+f(a)+f(b) =ua+b+f(a+b) =va+h

ED. Thus D is a subsemigroup of T. Each coset ua+S contains

exactly one element of D. Therefore DC\S= {o} since z;0 = Mo+/(0)

= 0; and if va+a = vb+ß with a, ßES, then a = b and a = ß. Thus

D+S = D®S. For each tET there exist aEQ, aES such that

t = ua+a=va-f(a)+aED®S. That is, T^D®S and hence T
= 7)95.

The final statement of the theorem is an immediate consequence

of the existence of the function / satisfying f(Q) Ç U(S) and <p(a, b)

=f(a+b)-f(a)-f(b). Q.E.D.
The following is a corrected version of Wiegandt's Theorem 1 [3].

Theorem 5. A semimodule Sis complete if and only if it is a divisible

(abelian) group.

Proof. If 5 is a divisible (abelian) group then Corollary 3 assures

us that it is a complete semimodule.

Conversely, if 5 is complete, then Wiegandt has proved that it

must be divisible. Suppose 5 were not a group and let aES\U(S)

(i.e. : let a be a nonunit of S). Let T be the Schreier extension of S by

No with factor-system <p: N0XN0—>S given by

0(a, b) = aba

where ab denotes the ordinary product of integers. Clearly 0 satisfies

I and II. To verify III we observe that 0(a, b+c) +(p(b, c) =a(b+c)a

+ bca = aba+aca+bca, and <j>(a + b, c) + <p(a, b) = (a + b)ca+aba

= aca+bcct+aba. Thus F is a Schreier semimodule extension of 5 by

No for which <p(N0XN0)^U(S). Hence by Theorem 4, 5 cannot be

a direct summand of T, contradicting the completeness of 5. Q.E.D.

4. Wiegandt's second theorem in [3] states that every complete

semimodule is uniquely expressible as the direct sum of a divisible

(abelian) group and a direct sum of semimodules each isomorphic to
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the additive semimodule R0. Our Theorem 5 shows that this theorem

is correct, but superfluously stated. Since Wiegandt, basing his think-

ing on his Theorem 1, considered the terms complete semimodule and

divisible semimodule to be synonymous, one is led naturally to the

question : does Wiegandt's Theorem 2 remain valid when complete is

replaced by divisible? A negative answer is provided by the following.

If a divisible semimodule 5 is decomposable as a direct sum G®P

of a group G and a direct sum P of semimodules isomorphic to the

additive semigroup R0, then GQU(S) and P is uniquely divisible.

Consider, then, the multiplicative semimodule Z of all complex num-

bers z such that 0< JäJ <1, with 1 adjoined. Since U(Z)= {l}, the

summand P, if it exists, would have to be all of Z, whereas Z is not

uniquely divisible.

Theorem 6. If S is a divisible semimodule, then U(S) is a direct

summand of S.

Proof. As Wiegandt points out in his proof of his Theorem 2, U(S)

is a divisible abelian group. The conclusion is then an immediate con-

sequence of Corollary 3. Q.E.D.

If 5 is a divisible semimodule, so that S= U(S) © C for some divisi-

ble semimodule C with U(C) = {o}, it does not follow that C* is

torsion-free, even though C itself cannot contain an element of finite

order. And even if C* were torsion-free, it is not necessarily true (as

Wiegandt asserts) that C is a direct sum of its components in the

decomposition of C* into a direct sum of groups isomorphic to the

additive rationals. However, we can prove the following.

Theorem 7. (1) A semimodule S is weakly integrally closed and divis-

ible if and only if S is the direct sum of a divisible (abelian) group and

a uniquely divisible semimodule with no nonzero units.

(2) A semimodule S with no nonzero units is uniquely divisible if

and only if it is a cone in a rational vector space.

Proof. (1) If S is weakly integrally closed and divisible, then S* is

divisible; and since the identity 0 of S* is the same as that of S,

every element a*ES* of finite order must be an element of S. Hence

U(S) will contain all the direct summands of S* which are groups of

Priifer's type p™ for every p. By Theorem 6, 5= U(S) ®C for some

subsemimodule C of S and clearly C must be a divisible subsemimod-

ule of a direct sum of groups isomorphic to the additive group R*.

C is then necessarily uniquely divisible.

Conversely, the direct sum of a divisible abelian group G and a

uniquely divisible semimodule P with no nonzero units will be a
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divisible semimodule. Suppose a*E(G®P)* is such that na*EG®P.

Then there exist gEG*, pEP* such that a* = g+p, since (G®P)*

= G*®P*; and it follows that ngEG and npEP- Now gEG = G*;

and since P and P* are both uniquely divisible, npEP and pEP*

imply pEP. Thus«* =g+pEG®P so that G©P is weakly integrally

closed.

(2) If 5 is uniquely divisible, then S* must be torsion-free and

hence is a direct sum of groups isomorphic to the additive group R0,

i.e.: S* is a rational vector space. By divisibility and semigroup clo-

sure, if a, ßES then i?0«C5 and for each rational t with 0^/^l,

ta + (l—t)ßES. Moreover, if aES then, since Z7(5)=j0}, —ra can-

not be in 5 for any rER. Thus 5 is a cone in S*. Q.E.D.

In conclusion we note that every divisible semimodule 5 can be

extended to its weak integral closure S' in S*, defined by S'

= {a£S*| BnEN^naES}, and the last theorem can then be ap-

plied to S' to give us some idea of the structure of 5.
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