COMPACT LINEAR TRANSFORMATIONS

C. T. TAAM

1. Consider a compact linear transformation T (also called completely continuous transformation) from a Banach space A to a Banach space B. Can T be approximated arbitrarily close in norm by bounded linear transformations whose ranges are finite dimensional (see [1, p. 49])? The answer is affirmative for the following types of domain and range spaces: (i) both A and B are Hilbert spaces (see [2, p. 204]), (ii) both A and B are C[a, b] (see [2, p. 222] or [3]), (iii) there is no other restriction on A, but B is of "type A" [4], (iv) A is either L^p or C and there is no other restriction on B (see [5, p. 536]). In this paper we shall show that the answer is also affirmative when A is any Banach space and B is C(E), E being a compact Hausdorff space.

Let S^* be the strongly closed unit sphere in the conjugate space B^* , namely the set of all linear functionals of unit norm or less. S^* is a compact Hausdorff space in the relative topology introduced in S^* by the weak * topology of B^* (see [1, p. 37]). For convenience, we continue to call this relative topology in S^* the weak * topology. Denote by $C(S^*)$ the Banach algebra of all the complex-valued weak *-continuous functions in S^* . For each x in B, the mapping $x \rightarrow x^{**}$ is an isometric isomorphism embedding B as a subspace of B^{**} , and $x^{**} \rightarrow x^{**}$ (restricted to S^*) is also an isomorphism satisfying

$$||x^{**}|| = \text{l.u.b.} |x^{**}(F)| = ||x^{**}||_{\infty};$$

where $||x^{**}||_{\infty}$ is the uniform norm of x^{**} restricted to S^{*} . Hence we can embed B as a subspace of $C(S^{*})$ under the isometric isomorphism $x \rightarrow x^{**}$ (restricted to S^{*}). Consequently, by embedding B in $C(S^{*})$, a compact linear transformation T from a Banach space A to a Banach space B can be approximated arbitrarily close in norm by bounded linear transformations of finite dimensional range from A to $C(S^{*})$. (See §3.)

The ideas in §§2 and 3 are suggested by those of Radon in [3]; (see also [2, p. 222]). Throughout this note, C(E) denotes the Banach algebra of all complex-valued continuous functions defined on a compact Hausdorff space E, and $(T^*F)(x)$ means (Tx)(F), for x in A, Tx in C(E) and F in E.

Presented to the Society, January 22, 1959, under the title On compact linear transformations in Banach space; received by the editors April 8, 1959.

2. In this section we shall establish the following result:

Let T be a compact linear transformation from a Banach space A to the space C(E). Then T^* is a continuous mapping on E to A^* . (Here A^* is given the usual norm topology.)

PROOF. Take a fixed F_0 in E. To each $\epsilon > 0$, we have to show that there is an open set O in E containing F_0 such that

(1)
$$||T^*F - T^*F_0|| < \epsilon \quad \text{for all } F \in O.$$

Suppose that this is not true. Then there is an $\epsilon = 2\epsilon_0 > 0$ such that (1) is satisfied by no open set O in E containing F_0 . We show that it leads to contradiction.

By virtue of the compactness of T, the image T(S) of the closed unit sphere S in A is separable and hence contains a sequence $\{z_n\}$ dense in the closure of T(S).

The sets $U_{m,n} = \{F \mid |z_m(F) - z_m(F_0)| < 1/n, F \in E\}$ are open sets in E and form a sequence $\{V_k\}$. Let O_n be the intersection of V_1 , V_2, \cdots and V_n . Clearly F_0 lies in each O_n and $\{O_n\}$ is monotonic decreasing. By the supposition, for each n, there exists a F_n in O_n such that $||T^*F_n - T^*F_0|| \ge 2\epsilon_0$. But then there is a x_n in S such that

$$(2) \qquad | [Tx_n](F_n) - [Tx_n](F_0) | = | [T^*F_n - T^*F_0](x_n) | > \epsilon_0.$$

Since T is compact, we may suppose, by passing to a subsequence if necessary, that

(3)
$$Tx_n = y_n$$
 converges in norm to some y in $C(E)$.

As y can be approximated arbitrarily close in norm by $\{z_n\}$, to an integer p satisfying $3 < \epsilon_0 p$, there is an integer q such that

$$||y-z_q||_{\infty}<\frac{1}{p}<\frac{\epsilon_0}{3}.$$

Let N be so large that O_N is contained in $U_{q,p}$. Then by (4), $|y(F_n) - z_q(F_n)| < 1/p$, $|y(F_0) - z_q(F_0)| < 1/p$ and, for $n \ge N$, $|z_q(F_n) - z_q(F_0)| < 1/p$. Hence

$$|y(F_n) - y(F_0)| < 3/p < \epsilon_0 \quad \text{for } n \ge N.$$

Now that, by virtue of (3), $|y_n(F_n) - y(F_n)|$ and $|y_n(F_0) - y(F_0)|$ both tend to zero as $n \to \infty$ and (5) together show that (2) cannot hold for all n. The contradiction proves that T^* is continuous on E.

3. Let T be the transformations of §2. For each F_k in E and each $\epsilon > 0$, the set $O_k = \{F | || T^*F - T^*F_k || < \epsilon, F \in E\}$ is open. Let g_k be a real-valued continuous function in E such that $g_k = 2$ at F_k , $g_k = 0$

outside O_k , $0 \le g_k \le 2$. The existence of such functions is assured by the Urysohn's lemma. Set $U_k = \{F \mid g_k(F) > 1, F \text{ in } E\}$, then U_k is an open set containing F_k , and $U_k \subset O_k$. Since E is compact, it can be covered by some finite family of sets U_1, U_2, \cdots, U_n . Setting $h_1(F) = \inf(g_1(F), 1)$, we define inductively

$$h_m = \inf \left(\sum_{i=1}^{m-1} h_i + g_m, 1 \right) - \sum_{i=1}^{m-1} h_i, \qquad m = 2, 3, \cdots, n.$$

The functions h_m are continuous and belong to C(E). They satisfy

$$o \leq h_i(F) \leq 1$$
, $\sum_{i=1}^n h_i(F) = 1$ in E ,

 $h_i(F) \neq 0$ implies $F \in O_i$. For x in A, define

$$T_n x = \sum_{i=1}^n (Tx)(F_i)h_i.$$

Clearly $T_n x$ is in C(E) and the range of T_n is finite dimensional. Using the properties of the functions h_i and the definition of O_i , we can see that in E

$$| (Tx)(F) - (T_n x)(F) | = | (T^*F)(x) - \sum_{i=1}^n h_i(F)(T^*F_i)(x) |$$

$$\leq || T^*F - \sum_{i=1}^n h_i(F)T^*F_i || ||x||$$

$$\leq \sum_{i=1}^n h_i(F) || T^*F - T^*F_i || ||x||$$

$$< \epsilon ||x||.$$

Hence

$$||Tx - T_n x||_{\infty} < \epsilon ||x||, \qquad ||T - T_n|| \leq \epsilon.$$

We have thus proved the following result:

A compact linear transformation T from a Banach space A to the space C(E) can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range.

In view of the discussion in §1, it follows that

A compact linear transformation T from a Banach space A to a Banach space B, embedded in $C(S^*)$, can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range from A to $C(S^*)$.

42 C. T. TAAM

4. If a sequence of compact linear transformations converges to a limit in norm it is known that the limit is compact. (See [1, p. 49]). In view of this property, the first result in §3 can be stated as follows:

T is a compact linear transformation from a Banach space A to a Banach algebra C(E) if and only if T can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range from A to C(E).

The method in $\S 3$ uses essentially the continuity of T^* . Hence from $\S \S 2$ and 3 we see that

A bounded linear transformation T from a Banach space A to a Banach algebra C(E) is compact if and only if T^* is continuous from E to A^* .

As consequences of these remarks we also see that

A linear transformation from a Banach space A to a Banach space B is compact if and only if when B is embedded in $C(S^*)$ it can be approximated arbitrarily close in norm by bounded linear transformations of finite-dimensional range from A to $C(S^*)$; and

A bounded linear transformation T from a Banach space A to a Banach space B is compact if and only if T^* is weak *-continuous on S^* to A^* .

Let $\beta(A, B)(\beta(A, C(S^*)))$ be the Banach space of all compact linear transformations from the Banach space A to the Banach space $B(C(S^*))$. We can also express the above results in the following form:

 $\beta(A, B)$ can be embedded in $\beta(A, C(S^*))$. The subspace of all the transformations of finite-dimensional range in $\beta(A, C(S^*))$ is dense in $\beta(A, C(S^*))$.

When A = B, $\beta(A, A)$ is an algebra. To apply the results above, we can embed both the domain A and range A in $C(S^*)$.

We observe that the completeness of A has not been used in this note.

REFERENCES

- 1. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, 1957.
 - 2. R. Riesz and B. Sz-Nagy, Functional analysis, New York, 1955.
- 3. J. Radon, Über Lineare Funktionaltransformationen und Funktionalgleichungen, Sitzsber. Akad. Wiss. Wien. vol. 128 (1919) pp. 1083-1121.
- 4. I. Maddaus, On completely continuous linear transformations, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 279-282.
- 5. R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 516-541.

GEORGETOWN UNIVERSITY