A SUFFICIENT CONDITION FOR A MATRIC FUNCTION TO BE A PRIMARY MATRIC FUNCTION¹

WALTER O. PORTMANN²

1. **Introduction.** A primary matric function is defined to be a matric function (that is, a mapping whose range and domain are sets of $n \times n$ matrices) arising from a scalar function of a complex variable. It has been shown [1] that primary matric functions are H-analytic. In this paper other necessary conditions for a primary matric function will be exhibited and it will then be shown that these conditions are also sufficient for a matric function to be a primary function.

We will first use a form of the definition of a primary function proposed by Frobenius and later use an equivalent form proposed by Giorgi [4]. Frobenius proposed that if the scalar function f(z) is analytic at the eigenvalues of Z in \mathfrak{M} (the algebra of square matrices of order n over the complex field) then f(Z) shall be defined by

(1.1)
$$f(Z) = \frac{1}{2\pi i} \int_C \frac{f(\lambda)}{\lambda I - Z} d\lambda,$$

where C is a set of admissible closed paths enclosing each of the distinct eigenvalues of Z. That is, the components of f(Z) are the integrals over C of the corresponding components of the matrix $f(\lambda)(\lambda I - Z)^{-1}/2\pi i$.

We wish to exhibit sufficient conditions on a matric function F(Z) such that there will exist a scalar function g(z) for which F(Z) = g(Z) where g(Z) may be computed as in (1.1).

2. **Necessary conditions.** It has previously been shown in [1] that primary matric functions are H-analytic in \mathfrak{M} , that is, the component functions of a primary function g(Z) are analytic functions of the components z_{ij} of Z, for Z in an \mathfrak{M} -neighborhood of a matrix at which g(Z) is defined.

If g(z) is a scalar function defined at a matrix X, that is, g(z) is analytic at the eigenvalues of X, and if Y is such that for some non-singular matrix P, $Y = P^{-1}XP$, then g is defined at Y and $g(Y) = P^{-1}g(X)P$, as can be seen from (1.1).

If Z is a matrix whose eigenvalues lie in the domain of analyticity of g(z), then the r, s component of g(Z) is given by

Received by the editors January 3, 1959 and, in revised form, April 13, 1959.

¹ This paper was prepared under the facilities granted by the Case Research Fund.

² The author is now associated with Arizona State University.

$$g(Z)_{rs} = \frac{1}{2\pi i} \int_C g(\lambda) (\lambda I - Z)_{rs}^{-1} d\lambda,$$

where $(\lambda I - Z)_{rs}^{-1}$ is the r, s component of $(\lambda I - Z)^{-1}$. For an upper triangular matrix $Z = (z_{ij})$, $z_{ij} = 0$ for i > j, a simple computation shows that $(\lambda I - Z)_{rs}^{-1}$ and thus $g(Z)_{rs}$ depend only on the z_{ij} for which $r \le i \le j \le s$ and is zero for r > s. In particular, $g(Z)_{rr} = g(r_{rr})$ for Z a diagonal (or upper triangular) matrix.

3. Sufficient conditions. We shall now show that these necessary conditions are also sufficient. For convenience the norm of a matrix $Z = (z_{ij})$ shall be defined by $norm(Z) = max_{i,j} | z_{ij} |$.

Theorem 3.1. Let D be an open domain of H-analyticity of a matric function F on \mathfrak{M} .

- (i) Let F be such that X in D and $Y = P^{-1}XP$ implies that Y is in D and $F(Y) = P^{-1}F(X)P$.
- (ii) Let F also be such that if $T = (t_{ij})$, in D, is a diagonal matrix, then $F(T)_{rr}$ is a function of only t_{rr} , where $F(T)_{rr}$ is the r, r component of F(T), that is

$$F(T)_{rr} = g_{rr}(t_{rr}).$$

Then there exists a scalar function g(z) such that for all Z in D, g(Z) = F(Z).

PROOF. Let C be a Jordan form for a matrix Z at which F is H-analytic, then C is a direct sum $C_{p_1} \dotplus \cdots \dotplus C_{p_k}$ of canonical blocks of the form

$$C_{p_i} = \begin{pmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ & \lambda_i & 1 & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & \lambda_i & 1 \\ 0 & & & \lambda_i \end{pmatrix}$$

with p_i rows and columns. (The λ_i occurring in different C_{p_i} need not be distinct.)

From (i) and Lemma 4.1 of [2] it follows that F(C) commutes with all matrices that commute with the canonical matrix C. It is known that a matrix F(C) satisfying this condition must be a direct sum $P_1(C_{p_1}) \dotplus \cdots \dotplus P_k(C_{p_k})$, where

$$(3.1) P_{i}(C_{p_{i}}) = \begin{pmatrix} \alpha_{i_{1}} & \alpha_{i_{2}} & \alpha_{i_{3}} & \cdots & \alpha_{i_{p_{i}}} \\ & \alpha_{i_{1}} & \alpha_{i_{2}} & \cdots & \alpha_{i_{p_{i}-1}} \\ & & \alpha_{i_{1}} & \cdots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots \\ & & & & \alpha_{i_{1}} & \alpha_{i_{2}} \\ & & & & & \alpha_{i_{1}} & \alpha_{i_{2}} \\ & & & & & & \alpha_{i_{1}} & \alpha_{i_{2}} \end{pmatrix}$$

and $\alpha_{i_m} = \alpha_{j_m}$ for $\lambda_i = \lambda_j$ (see Turnbull and Aitken [7]).

Now, using a definition proposed by G. Giorgi which is equivalent to (1.1) [4] for g(Z) where g(z) is a scalar function, it is seen that the theorem will be proven if there exists a scalar function g(z) such that, for $C = P^{-1}ZP$, where Z is any matrix at which F is H-analytic,

(3.2)
$$\alpha_{j_m} = g^{(m-1)}(\lambda_j)/(m-1)!$$

or,

(3.3)
$$F(C)_{r_jr_j+i} = g^{(i)}(\lambda_j)/i!, \quad j=1,\dots,k, i=0,\dots,p_j-1,$$

where $F(C)_{r_jr_j+i}$ is the r_j , r_j+i component of F(C) (that is, $F_{r_jr_j+i}$ evaluated at the components of C) and $r_j=1+\sum_{i=1}^{j-1}p_i$ for $1 < j \le k$, $r_j=1$ for j=1. (This choice of r_j proves (3.2) for components in the first row of each triangular block $P_j(C_{p_j})$ of F(C) associated with C_{p_j} of C, which is all that is necessary, since in any such block, the values on any super diagonal are all equal.)

We shall first exhibit a scalar function g(z) which is determined by F and then show that this function has the required property (3.3).

Let Z be an arbitrary but fixed matrix such that F is H-analytic in a neighborhood of Z; then Z is similar to an upper triangular matrix $X = (x_{ij})$ whose eigenvalues are the x_{ii} . By (i) F is H-analytic in a neighborhood of X. Choose any matrix $Y = (y_{ij})$ such that $y_{ij} = x_{ij}$ and $y_{ii} \neq y_{jj}$ for $i \neq j$, and $|y_{ii} - x_{ii}| < \epsilon$, where ϵ is sufficiently small such that F is H-analytic at Y (such an ϵ exists since F is H-analytic in a neighborhood of X). Y is similar to a diagonal matrix $A = \operatorname{diag}(y_{kk})$ with distinct eigenvalues y_{ii} and by (i) F is H-analytic at A. Now, A is similar to a diagonal matrix B obtained from A by permuting, say y_{ii} and y_{jj} , and by (i), this same permutation is performed on F(A) in order to obtain F(B). Thus by (ii), $g_{ii}(y_{ij}) = F(B)_{ii} = F(A)_{ij}$ $=g_{ij}(y_{ij})$. Hence for any j, $g_{ij}(z)=g_{ii}(z)$ for $i=1, \dots, n$ and $|z-x_{ij}|$ $<\epsilon$ and therefore, since the F_{ii} are analytic, there exists a function $g(z) = g_{11}(z) (= g_{ii}(z), i = 2, \dots, n)$, analytic in the open circular domains $|z-x_{ij}| < \epsilon, j=1, \cdots, n$, where the x_{ij} are the eigenvalues of Z. Thus, since Z is an arbitrary matrix in D, there exists a function g(z) which is analytic at the eigenvalues of all matrices in D.

In order to show that g(z) satisfies (3.3) we first note, from (3.1), that if F is H-analytic in a neighborhood of a canonical matrix C, then F(C) may be written

$$(3.4) F(C) = \sum_{i=1}^{k} \sum_{s=0}^{p_i-1} \sum_{t=0}^{p_i-s-1} F(C)_{r_i r_i + t} E_{r_i + s \ r_i + s + t}$$

where $r_i = 1 + \sum_{t=1}^{i-1} p_t$ and E_{pq} is the matrix with a 1 in the p, q position and zeros elsewhere.

Now, for each j, $1 \le j \le k$, let

$$K_{p_{j}} = \begin{pmatrix} \lambda_{j} & 1 & 0 & \cdots & 0 \\ & \lambda_{j} + h_{j} & 1 & & & \\ & & \lambda_{j} + 2h_{j} & & & \\ & & & \ddots & & \\ & & & \ddots & & \\ 0 & & & & \lambda_{j} + (p_{j} - 1)h_{j} \end{pmatrix}$$

then for all $h_j \neq 0$ sufficiently small, F is H-analytic at $K = K_{p_1} \dotplus \cdots \dotplus K_{p_k}$ (since F is H-analytic in a neighborhood of C).

Let $Q_j = (q(j)_{rs})$, r, s = 1, \cdots , p_j , where $q(j)_{rs} = 0$ for r > s and $q(j)_{rs} = (-1)^{r+s}/(s-r)!h_j^{s-r}$ for $r \le s$, then $Q_j^{-1} = (\tilde{q}(j)_{rs})$ where $\tilde{q}(j)_{rs} = 0$ for r > s and $\tilde{q}(j)_{rs} = 1/(s-r)!h_j^{s-r}$ for $r \le s$; also

$$Q_j K_{p_j} Q_j^{-1} = D_{p_j} = \operatorname{diag}(\lambda_j + (i-1)h_j), \qquad i = 1, \dots, p_j.$$

Now, let $Q = Q_1 \dotplus \cdots \dotplus Q_k$, then $QKQ^{-1} = \Lambda = D_{p_1} \dotplus \cdots \dotplus D_{p_k}$, the canonical form of K. By (i), F is H-analytic at Λ , and as in (3.4),

$$F(\Lambda) = \sum_{i=1}^{n} F(\Lambda)_{ii} E_{ii}.$$

By (i), $F(K) = Q^{-1}F(\Lambda)Q$, therefore, for $0 \le i \le p_j - 1$, $F(K)_{r_jr_j+i} = \sum_{s=0}^{4} \tilde{q}(j)_{r_jr_j+s}F(\Lambda)_{r_j+sr_j+s}q(j)_{r_j+sr_j+i}$. Thus, by the first part of this proof and the definitions of $q(j)_{rs}$ and $\tilde{q}(j)_{rs}$,

$$F(K)_{r_{j}r_{j}+i} = \frac{1}{h_{j}^{i}} \sum_{s=0}^{i} \frac{(-1)^{s+i}g(\lambda_{j} + sh_{j})}{s!(i-s)!}$$

$$= \frac{1}{i!h_{s}^{i}} \sum_{s=0}^{i} (-1)^{s+i} {i \choose s} g(\lambda_{j} + sh_{j}) = \frac{\Delta^{i}g(\lambda_{j})}{i!h_{j}^{i}}.$$

Since $\lim_{h_j \to 0} \Delta^i g(\lambda_j) / h_j^i = g^{(i)}(\lambda_j)$ [6],

$$\lim_{\Sigma:|h_i|\to 0}K=C,$$

and the F_{rs} are analytic and therefore continuous in a neighborhood of the components of C, it follows that

$$F(C)_{r_jr_j+i} = \lim_{h_j \to 0} F(K)_{r_jr_j+i} = g^{(i)}(\lambda_j)/i!.$$

Thus (3.3) is proven and hence Theorem 3.1.

It might here be noted that (i) alone is not sufficient for F(Z) to be a primary matric function, as is shown by the function $F(Z) = \sum_{i=1}^{n} F_{ii}E_{ii}$, where $F_{ii} = \sum_{k=1}^{n} z_{kk} = \operatorname{tr}(Z)$. The component functions F_{ij} are analytic functions of the z_{rs} of Z and therefore F is H-analytic; also, for $Y = P^{-1}ZP$, $F(Y) = P^{-1}F(Z)P$. However F_{ii} is not a function of only z_{ii} when Z is a diagonal (or upper triangular) matrix which is necessary for a primary matric function.

It might be further noted, since F(X) is diagonal when X is diagonal, that if X is restricted to the algebra $\mathfrak D$ of $n \times n$ diagonal matrices, then F(X) is also a function on $\mathfrak D$. Ringleb [5] gave a necessary and sufficient condition for a function to be H-analytic in an algebra; namely, the (analytic) component functions must satisfy a certain set of linear homogeneous partial differential equations of the first order with constant coefficients which depend only on the structure of the algebra. For the algebra $\mathfrak D$, this necessary and sufficient condition for a function $F(T) = \sum_{i=1}^n F(T)_{ii} E_{ii}$ to be H-analytic in $\mathfrak D$ at a matrix $T = \operatorname{diag}(t_{ii})$ is

$$\frac{\partial F(T)_{ii}}{\partial t_{ii}} = 0 \qquad \text{for } i \neq j.$$

Thus hypothesis (ii) of Theorem 3.1 could be restated as follows: Let F also be such that, when restricted to the algebra \mathfrak{D} , F is H-analytic in \mathfrak{D} at any diagonal matrix in D.

REFERENCES

- 1. W. O. Portmann, A derivative for Hausdorff-analytic functions, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 101-105.
- 2. ——, Hausdorff-analytic functions of matrices, Proc. Amer. Math. Soc. vol. 11 (1960) pp. 97-101.
 - 3. H. Richter, Über Matrixfunktionen, Math. Ann. vol. 122 (1950) pp. 16-34.
- 4. R. F. Rinehart, The equivalence of definitions of a matric function, Amer. Math. Monthly vol. 62 (1955) pp. 395-414.
- 5. F. Ringleb, Beitrage zur Funktionentheorie in hypercomplexen Systemen I, Rend. Circ. Mat. Palermo vol. 57 (1933) pp. 311-340.
- 6. D. W. Robinson, An application of the decomposition of a matrix into principal idempotents, Amer. Math. Monthly vol. 65 (1958) pp. 694-695.
- 7. H. W. Turnbull and A. C. Aitken, An introduction to the theory of canonical matrices, Blackie and Son Ltd., 1932.