FUNCTIONAL EQUATIONS INVOLVING A PARAMETER!
M. ALTMAN

1. The present note concerns the examination of nonlinear func-
tional equations depending on a parameter. We investigate here the
iterative method described in paper [1] and [2], which is a general-
ization of Newton's classical method. Another abstract formalism for
Newton’s method has been given first by L. V. Kantorovich (for
references see [4]) and applied by him to the examination of operator
equations in Banach spaces.

The main point here is the application of the majorant method,
which was used by Kantorovich [4] and also in paper [3].

The results stated here make it possible to find an error estimation
of the exact solution in the case when the solution of a suitable ap-
proximate equation is given.

An application to approximate solutions of operator equations in
Hilbert space will be given in another note.

Let X and M be two Banach spaces, and let F(x, u) be a nonlinear
continuous functional defined on the space X+ M, where x and u
are in some closed spheres in X, M with centres xo, po, respectively.

Consider the nonlinear functional equation

1 F(x, u) = 0.

Let us assume that F(x, u) is differentiable in Fréchet’s sense in
the spheres mentioned above with respect to each of the two variables
x, u separately. Denote by

f(®, p) = F'(x, p) = F (%, p)

the partial Fréchet derivative of F(x, u).
Putting

f" = f(x") I‘) = Fz/(xn, /"’)
we choose a sequence of elements y,EX, u& M such that
(2) : “y"” = 1! f"(y”’ Il:) = ||fn”1 n = 07 17 27 te

provided that such a choice is possible.

The iterative process for solving equation (1) is defined as in papers
[1] and [2]:
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F(xo, 1)
So(yo, u)
F(%n, 1)
Ja(¥n, 1)

Let us further assume that the second Fréchet derivative F''(x, u)
= F,.(x, u) of F(x, u) exists for x in some sphere of X with centre x,
and that the derivatives 9 F(x, u)/du, O F'(x0, u)/0u and 9F' (x, u)/du
exist where u belongs to some sphere of M with centre p,.

Consider now the real equation

4) Q(z,v) =0,

where Q(z, v) is a real function of the real variables g, v, being twice
continuously differentiable in the intervals (2o, 2’) and (vo, ¥"). Put
Q'(z,») =Q/ (2, ») and Q"' (2, ») = Qi(z, ).

Following the argument of paper [3] let us say that equation (1)
possesses a real majorant equation (4), if the following conditions
are satisfied:

©) 21(w) = %0 —

Yo;

Tnp1(u) = xa(u) — Yn.

1

(1°) Q' (z0,7) %0 and B = — 0o ) > 0;
(2°) |F(x0, w)l| < Q(z0, ¥);

3°)

< B
|| F* (00, )|

4°) ||F'(x, w)|| Q" (s, v) if ||x—x0|| S2—20<5" —20, provided that
u and » are fixed.

The following theorem of paper [3] will be used in the sequel:

THEOREM (a). If for fixed u and v equation (1) possesses a real major-
ant equation (4), and if equation (4) has a real root z* in the segment
(20, 7'), then equation (1) has a solution x*, where ||x* —x|| <3’ — 20, and
the sequence of approximate solutions x, constructed by process (3) con-
verges to it. Moreover, we have the estimate

(5) ”x,, - x*” =< ¥ — 2,
where 2, is defined by Newton's classical process, 1.e.

Q(zm v) .
Q' (24, )

(6) Znp1(¥) = 2.(v) —
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Suppose now that the approximate solution x, of equation (1) is
given for a certain value uo of the parameter and we are interested in
the solution of this equation for some other value u of the parameter.
The following theorem concerns this case.

THEOREM 1. Let us assume that the following conditions are satisfied:
1

(1°) Q: (20, v0) # 0 and B = _m>

0;

(2°) | F(xo, ) | < Q(z0, 70);

()  o—— S B;
|| o, wol]] =

4°) |F" (2, mo)|| < Q”"(z, o) iffle — x| <3 —20 <9 — 2;
9 a

(5°) || — F(xo, ) || = — Q(z0, 7) 1f”lt - lto“ Sv—w =y —w;
u dv

9 ]
(6°) ™ Fl(xo, p) || = ;Q’(Zo, v) if||u— o] Sv—ro v — v
M v

<] i)
1) |=Faw|s—0'G@»  iflu—udSr—rnss —n
u v

and ||z — x| < 2 — 20 < 2 — 2.

If equation (4) possesses a real solution z(v), (z20=2(v) <2'), for some v,
wo=v=V'), then equation (1) has a solution x(u) if ”p,—uo” <v—vwp
=v' —vy and the sequence of approximate solutions x,(u) defined by
process (3) converges to it. Moreover, we have

”x(u) — xo” = z(») — 2.

ProoF. In order to prove this theorem it is sufficient to show that
the conditions of Theorem (a) are satisfied. First of all we shall show
that condition (2°) of the preceding theorem is fulfilled. In fact, we
have by (5°)

|F(x0>/“)| =

L]
F(xo, po) + | — F(xo, B)diz
no On

< 020, 7)) + f | %Q(zo, 5)ds

= Q(20, o) + Q(20, 2) — Q(20, ¥0) = Q(20, »).
Further, we get by (6°), (1°) and (3°)



1960] FUNCTIONAL EQUATIONS INVOLVING A PARAMETER 57

59
|E (2o, w)]| = I] F' (%0, po) + f py F' (%0, B)di

2z || F' (o, wo)l| —

k9
f o F,(x07 ﬂ)dﬁ
wo OF

L] 1
2 [|F* (o, wo) (1 - f aa o MR | e no)“>
f ' 2_- Q' (%0, 7)d5
vo OF
2 ||F (o, wo)|| \1 — 17 Geor )]
2 || P (zo, o) (1 + (z°’3(z— (3)(%, w)

_ ”F,(xO’ HO)”
Q' (20, v0)

if the last expression is positive.
We have now to prove that Q’(z,, ») is negative. For this purpose
we shall show that Q''(z, v) is non-negative. We have by (7°)

Q'(z0,7) 2 — @20, %),

| B¢z, w)|| < || F" (2, wo)|| +

b9
[ 2 e pa
uo O

o OF

sOGw+ [ 5"’— 0z, »)d

= Q"(z,v0) + Q" (3, %) — Q"(z, »0)

=Q"(z»).
If Q'(20, v) were non-negative we should have Q’'(z, »)=0 since
Q"' (2,7) 20. Hence we get by (1°) and (5°) Q(z, ») Z Q(20, ) Z Q(20, »0)
>0. But this leads to a contradiction because equation (4) has a real
solution. Thus, we conclude that condition (1°) is satisfied. It re-
mains to prove that condition (4°) of Theorem (a) is also satisfied,
ie. |[F"(x, w|=Q"( v) if lx—2xo]| Sz—20<2"—30, and ||u—po|
<v—vo =V’ —v,. But this verification has already been obtained above,
and thus the theorem is proved.

REMARK 1. The error estimate is given by the formula

l2a() — 2()|| < 20) — za).

This remark follows from (5).
REMARK 2. Condition (2°) can be replaced by condition
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” x1(u) — xo“ =< z:(») — 2.

This remarks follows from the proof of Theorem (a).
Consider now the following particular case of a functional equation
depending on a parameter:

Y] F(x,p) = G(x) + pH(z) = 0,

where G(x) and H(x) are nonlinear, continuous functionals on X and
4 is a real number. Suppose that a solution of equation (7) is given
for uo=0. Applying Theorem 1 we obtain the following

THEOREM 2. Let us assume that G(x) and H(x) are twice continuously
differentiable in the sense of Fréchet and the following conditions are
fulfilled:

1) G(xo) = 0.
1

2 IEzes| < B.

3) ") = Kk if || — ad| < 2 — 2;
4 | H(xo)| = n;

(5) 1B (x0)]| < o

(©) 78" @) =8 ifl# = xf <2~z
and

(1 — aBy)?
@) — — 2m(K + vB) = 0; 0< aBr < 1.

Then equation (7) has a solution if Iul =v and the sequence of approxi-
mate solutions x, defined by process (3) converges to it. Moreover, the
solution x* satisfies the inequality ||x* —xo|| <2(v) and conditions (5)
and (6) hold, provided that the majorant equation (4) is replaced by
the following one:?

K+u;32 1 — aBy
z—
2 B

(8) Q(Z, ") = z+wm=0, (20 =0,v = 0)°
Proor. It is easy to verify that all conditions (1°)—(7°) of Theorem
1 are satisfied.
REMARK 3. Instead of the majorant equation (8) we can use the
following one?

2 Jt seems to be interesting to notice that these majorant equations are the same
as those considered by Kantorovich [4].
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1 — aBy

K z 21
9 0(z,v) = 7z -l-vfo dzlfo B(t)dt — z+ vy =0.

In this case condition (6) should be replaced by condition (10)
(10) | B"@)|| < B() if ||lx — a| <7

All assertions of Theorem 2 hold if equation (9) has a positive root for
(] .

REMARK 4. Notice that Corollary 2 in [3, p. 23] may be considered
as a particular case of Theorem 2 if we put

F(x,u) = [F(x) — F(x0)] + uF(x0), (o = 1).

2. In this section we are concerned with the error estimation for
the approximate solution of the functional equation

(11) F(x) = 0,

where F(x) is a nonlinear continuous functional defined on the Banach
space X.
At the same time we consider the approximate functional equation

(12) G(x) = 0,

where G(x) is also a nonlinear continuous functional defined on X.
Suppose that x, is a solution of equation (12). In order to find how
near the solution of equation (11) is to xy we introduce the following
functional equation depending on a parameter:

(13)  F(x,») = G(x) + p[F(x) — G(x)] = G(») + pH(x) = 0.

Suppose that both F(x) and G(x) are twice continuously differentiable
in the sense of Fréchet. We are now in a position to apply Theorem 2.
Hence we get

CoROLLARY 1. Let us assume that the following conditions are ful-
filled.

(1) G(x0) =0,

(2) 1/||G'(x0)[| < B,

@) 6" @] =K if [|lx x| <7 2,

@) |Fxo)| =,

(5) ||F(x0) =G’ (x0)|| S,

(6) || F"(2) =G (2)|| B if [|x —2d| Sz’ — 20,

(1) (1—aB)?/B*—29(K+p)20, (aB=1).
Then equation (11) has a solution x* such that

[ 2% = o = 2,
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where 2, is the smallest root of the equation
K+ B 1—aB
22 —_—
2 B

g2+ 9=0.

This estimation may be useful especially in the case, when the ex-
pression (2) is more simple than the corresponding one for the func-
tional F. We shall now apply the estimation obtained above replacing
G(x) by

(14) G(x) = F(x0) + F'(x0)(x — x0).

As the initial approach, which appears in Corollary 1, we take now
the solution x, of equation

(15) G(xl) = F(xo) + F’(xo)(xl - xo) = 0.

Condition (15), is, of course, satisfied if x; is defined by process (3).
As a particular case of Corollary 1 we obtain

COROLLARY 2. Let us assume that the following conditions are satis-
fied:

(1) |F(xo)| =,

(2) 1/||F'(x0)]| =B,

@) [P/ @I =K if [lx—xd| <2’ 20,

@) |Fx)| =m,

(5) 1—KB*n)?/B*—-2mK =20, (KB*n=1).
Then equation F(x)=0 has a solution x* such that

[la* — 2l = =,

where 21 is the smallest root of equation

lez_l—Banz —0
B nes
Let us observe that in this case the following conditions are satis-
fied:
(1) G(x) =0,
@) 1/||6' @) =1/||F' (x0)|| £ B,
3) [l6” @) =o,
@) |[F@)| =m,
(5) “F’(xl) —G' ()| =|[F'(2) = F' (x0)|| £ K]|21—xo]| < KBy =0,
(6) ||F"(x)=G" ()| =||F"(x)|| =K =8.
But this means that all conditions (1)—(7) of Corollary 1 are satisfied
provided that x, is replaced by x; and a=KBy, 8=K.
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AN UNCOUNTABLE SET OF INCOMPARABLE DEGREES
-J. R. SHOENFIELD
The purpose of this note is to prove the following:!

THEOREM. There is an uncountable set of pairwise incomparable de-
grees of recursive unsolvability.

By Zorn’s lemma, there is a maximal set of pairwise incomparable
degrees of recursive unsolvability different from 0; we must show that
this set is not countable. Hence our theorem follows from:

LeEMMA. If a, a1, * - - 15 a sequence of degrees different from 0, then
there is a degree b which is incomparable with each a,.

Proor.? Let «, be a function of degree a,; we shall construct a
function 8 of degree b. As in [1], 8 is constructed by defining induc-
tively a function « such that «k(a) =8(v(a)) with v(a) =Ik(x(a)); k and
v must satisfy the conditions that k(e) is a sequence number, k(a+1)
extends x(a), and v(a+1)>v(a). We then have B(a)=(x(a+1)),
—1.

Let k(0) =1. To define k(a+1), let n=(a); and e=(a).. If a is even,
set

k(a + 1) = k(@) pv) exp({e} = (v(a)) + 2)
if {e}“"(v(a)) is defined, and k(a+41)=«(a) p,q otherwise. Then
clearly B {e}“" for any function § such that B(»(a+1)) =«(a+1).
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