
FUNCTIONAL EQUATIONS INVOLVING A PARAMETER1

M. ALTMAN

1. The present note concerns the examination of nonlinear func-

tional equations depending on a parameter. We investigate here the

iterative method described in paper [l] and [2], which is a general-

ization of Newton's classical method. Another abstract formalism for

Newton's method has been given first by L. V. Kantorovich (for

references see [4]) and applied by him to the examination of operator

equations in Banach spaces.

The main point here is the application of the majorant method,

which was used by Kantorovich [4] and also in paper [3].

The results stated here make it possible to find an error estimation

of the exact solution in the case when the solution of a suitable ap-

proximate equation is given.

An application to approximate solutions of operator equations in

Hilbert space will be given in another note.

Let X and M be two Banach spaces, and let F(x, p) be a nonlinear

continuous functional defined on the space X+M, where x and p

are in some closed spheres in X, M with centres x0, Mo, respectively.

Consider the nonlinear functional equation

(1) F(x, p) = 0.

Let us assume that F(x, p) is differentiable in Fréchet's sense in

the spheres mentioned above with respect to each of the two variables

x, p separately. Denote by

f(x, p) = F'(x, im) = F¿ (x, it)

the partial Fréchet derivative of F(x, p).

Putting

/»  = f(Xn, II)   =   F¿ (Xn, p)

we choose a sequence of elements ynEX, pEM such that

(2) IWI = 1,       Myn, p) = 11/41,        ra = 0, 1, 2, • • •
provided that such a choice is possible.

The iterative process for solving equation (1) is defined as in papers

[l]and [2]:
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F(x0, p)
(3) xi(p) = xo - —- y0;

fo(yo, p)

( \      f \   F(x"' m)
xn+i(p) = xn{p) — —- yn.

fn(yn, p)

Let us further assume that the second Fréchet derivative F"(x, p)

= F"x(x, p) of F(x, p) exists for x in some sphere of X with centre x0

and that the derivatives dF(x, p)/dp, d7"(x0, p)/dp and dF"(x, p)/dp

exist where p belongs to some sphere of M with centre ^o.

Consider now the real equation

(4) Q(z, v) = 0,

where Q(z, v) is a real function of the real variables z, v, being twice

continuously differentiable in the intervals (zo, z') and (va, v'). Put

Q'(z, v)=QJ(z, v) and Q"(z, v)=Q'¿(z, v).
Following the argument of paper [3] let us say that equation (1)

possesses a real majorant equation (4), if the following conditions

are satisfied:

(Io) Q'(z0, v)*0   and   B = - —- > 0;
Q (zo, v)

(2°) \\F(x0,p)\\^Q(zo,V);

1
(3°) n-rr ^ -ß;

||f'(xo,m)||

(4°)    ||F"(x, p)\\^Q"(z, v) if ||*-*o|| ^z-zo^z'-zo, provided that

p and v are fixed.

The following theorem of paper [3] will be used in the sequel:

Theorem (a). If for fixed p and v equation (1) possesses a real major-

ant equation (4), and if equation (4) has a real root z* in the segment

(za, z'), then equation (1) has a solution x*, where ||x*—xo|| gs'-Zo, and

the sequence of approximate solutions x„ constructed by process (3) con-

verges to it. Moreover, we have the estimate

(5) ||x„ — x*|| S z* — 2„,

where zn is defined by Newton's classical process, i.e.

Q(Zn, v)
(6) Zn+i(v) = zn(v) - —- •

Q(Zn, V)
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Suppose now that the approximate solution xo of equation (1) is

given for a certain value p0 of the parameter and we are interested in

the solution of this equation for some other value p of the parameter.

The following theorem concerns this case.

Theorem 1. Let us assume that the following conditions are satisfied:

1(Io)

(2°)

(3°)

(4°)

(5°)

(6°)

(7°)

Qi (zo, vo) 9^0   and   B = -

F(xo, mo) |   á Q(zo, v0) ;

1

Q'(Z0,  *o)
>0;

£B;
\F'(xo, p0)

\F"(x>po)\\^Q"(z,v0)

dp
F(x0, p)

— F'(x0, p)
dp

Op
F"(x, p)

á — Q(z0, v)
dv

è-Q'(zo,v)
dv

<-Q"(z,v)
dv

if\\x — x0|| ^ z — zo á z' — z0;

if\\p — po\\ è v — vo ^ v' — Vo)

ifWß — i"o||< v - < v' -Vo ä V va)

if\\p — po\\ Û v < v' -vo S V vo

and \\x Xo\\   § ! - 2, S Ï<   z'   - zo.

If equation (4) possesses a real solution z(v), (zoikz(v) ^z'),for some v,

(voúvSv'), then equation (1) has a solution x(p) if \\p— Po\\ év — vo

Sv'—vo and the sequence of approximate solutions xn(p) defined by

process (3) converges to it. Moreover, we have

\\x(p) — x0|| ^ z(v) — z0.

Proof. In order to prove this theorem it is sufficient to show that

the conditions of Theorem (a) are satisfied. First of all we shall show

that condition (2°) of the preceding theorem is fulfilled. In fact, we

have by (5°)

F(xo, p)   = /•" d— F(xo,p)dp
co dp

d
è Q(zo, vo) +  f    — Q(zo, v)dV

J"0     dv

= ö(2o, vo) + Q(zo, z) - Q(Zo, Vo) = Q(zo, v).

Further, we get by (6°), (Io) and (3°)
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\\F'(xo,p)\\ /•"  d— F'(x0, fi)dp
«o   dß

-I!/.
HI/.

^I|f'(xo,mo:

ê \\F'(xo, po.

no   dp

'" d

no dp

•" d

uo dp

F'(xo, ß)dß

F'(xo, ß)dß
7'(xo,ßo)\\J

^ \\F'(xo,
f

1 _       °

— Q'(xo, v)dvy
dv

\F'(xo, ßo)\

\F'(x0, ßo)\

Q'(zo, vo)

1 +

F'(x0, mo)||       '

Q'(z0, v) - Q'(zo, vo)^

e'(*o, vo)

Q'(zo, v) ^ - Q'(zo, v),

if the last expression is positive.

We have now to prove that Q'(zo, v) is negative. For this purpose

we shall show that Q"(z, v) is non-negative. We have by (7°)

|| F"(x,ß)\\ Z ||F"(x,mo)|| + II ff F"(x, p)dp
II J m dp

^Q"(z,vo)+ f'^Q"(x,v)dv
J po dv

= Q"(z, vo) + Q"(z, v) - Q"(z, vo)

= Q"(z, v).

If Q'(zo, v) were non-negative we should have Q'(z, v)¡zO since

Q"(z, v) ̂  0. Hence we get by (Io) and (5°) Q(z, v) ̂  Q(z0, v) à Q(z0, v0)

>0. But this leads to a contradiction because equation (4) has a real

solution. Thus, we conclude that condition (Io) is satisfied. It re-

mains to prove that condition (4°) of Theorem (a) is also satisfied,

i.e. ||F"(x, p)\\^Q"(z, v) if \\x — Xo\\úz — Zoúz'—Zo, and ¡[/x. —Mo||

úv — voúv' — vo- But this verification has already been obtained above,

and thus the theorem is proved.

Remark 1. The error estimate is given by the formula

\\xn(p) - x(m)|| Ú z(v) - zn(v).

This remark follows from (5).

Remark 2. Condition (2°) can be replaced by condition
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Il Xi(ß)  — Xo\\   á Zi(v)  — Zo.

This remarks follows from the proof of Theorem (a).

Consider now the following particular case of a functional equation

depending on a parameter:

(7) F(x, ß) = G(x) + ßH(x) = 0,

where G(x) and 77(x) are nonlinear, continuous functionals on X and

p is a real number. Suppose that a solution of equation (7) is given

for Mo = 0. Applying Theorem 1 we obtain the following

Theorem 2. Let us assume that G(x) and H(x) are twice continuously

differentiable in the sense of Frêchet and the following conditions are

fulfilled :

(1) C7(xo) = 0.

1
(2) ¡i-rr ^ B-

\\G'(xo)\\

(3) \\G"(x)\\ ^ K if\\x - Xo\\ g z' - z0;

(4) |Z7(x0)|   f£„;

(5) \\B'(xo)\\ g a;

(6) \\H"(x)\\^ß fT||*-*||S«'-H,

and

(1 - aBv)2
(7)-2vn(K + vß) fc 0; 0 < aBv < 1.

Then equation (7) has a solution if \p\ £v and the sequence of approxi-

mate solutions xn defined by process (3) converges to it. Moreover, the

solution x* satisfies the inequality ||x*— x0|| ^z(v) and conditions (5)

and (6) hold, provided that the majorant equation (4) is replaced by

the following one:2

K + vß 1 - aBv
(8) Q(z, v) =-z2-z + vr, = 0, (z0 = 0, vo = 0).

2 B

Proof. It is easy to verify that all conditions (lc)-(7°) of Theorem

1 are satisfied.

Remark 3. Instead of the majorant equation (8) we can use the

following one2

2 It seems to be interesting to notice that these majorant equations are the same

as those considered by Kantorovich [4].
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K f *        /* 1 1 — aBv
(9) Q(z, v) = — z2 + v \   dzi\    ß(t)dt-z + vq = 0.

2 J o        J o B

In this case condition (6) should be replaced by condition (10)

(10) || H"(x)\\ ^ ß(r) if ||x - Xo|| Ú r.

All assertions of Theorem 2 hold if equation (9) has a positive root for

Remark 4. Notice that Corollary 2 in [3, p. 23] may be considered

as a particular case of Theorem 2 if we put

F(x, p) = {F(x) - F(xo)] + pF(x0), (po = 1).

2.  In this section we are concerned with the error estimation for

the approximate solution of the functional equation

(11) F(x) = 0,

where F(x) is a nonlinear continuous functional defined on the Banach

space X.

At the same time we consider the approximate functional equation

(12) G(x) = 0,

where G(x) is also a nonlinear continuous functional defined on X.

Suppose that x0 is a solution of equation (12). In order to find how

near the solution of equation (11) is to x0 we introduce the following

functional equation depending on a parameter:

(13) F(x, p) = G(x) + p{F(x) - G(x)] = G(x) + pH(x) = 0.

Suppose that both F(x) and G(x) are twice continuously differentiable

in the sense of Fréchet. We are now in a position to apply Theorem 2.

Hence we get

Corollary 1. Let us assume that the following conditions are ful-

filled.
(1) G(xo)=0,

(2) l/\\G'(x0)\\^B,

(3) |G"(x)||;g7:¿/-||x-Xo||^z'-Zo,

(4) F(xo)\Zr,,

(5) F'(xo)-G'(xo)||^a,

(6) F"(x)-G"(x)\\ ^ß if ||x-Xo|| úz'-zo,

(7) (l-aB)2/B2-2r)(K+ß)^0, (aB^Í).

Then equation (11) has a solution x* such that

|| x* — X0||   á Si)
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where zi is the smallest root of the equation

K + ß
2  _

1 - aB

B
z + v = 0.

This estimation may be useful especially in the case, when the ex-

pression (2) is more simple than the corresponding one for the func-

tional F. We shall now apply the estimation obtained above replacing

G(x) by

(14) G(x) = F(xo) + F'(xo)(x - xo).

As the initial approach, which appears in Corollary 1, we take now

the solution Xi of equation

(15) G(xi) = F(xo) + F'(x0)(xi - xo) = 0.

Condition (15), is, of course, satisfied if Xi is defined by process (3).

As a particular case of Corollary 1 we obtain

Corollary 2. Let us assume that the following conditions are satis-

fied:
(1) \F(xo)\^v,

(2) l/\\F'(x0)\\iB,

(3) \\F"(x)\\íK if \\x-Xo\\^z' -zo,

(4) \F(xi)\^Vu
(5) (l-KB2r,i)2/B2-2ViK^0, (KB27,i^l).

Then equation F(x) = 0 has a solution x* such that

II«* - *i|| Û Zi,

where Zi is the smallest root of equation

1
— Kz2
2

1 - B2Kr,

B
vi = o.

Let us observe that in this case the following conditions are satis-

fied:
(1) G(x0=0,
(2) l/||G'(x,)|| = l/||F(«,)||áB,

(3)
(4)
(S)
(6)

G"(x)||=0,

f(xi)| gin,
F'(xi)-G'(xi)

F"(x)-G"(x)
F'(xi)-F'(xo)\\^K\\xi-Xo\\úKBn=a,

F"(x)\\^K=ß.
But this means that all conditions (l)-(7) of Corollary 1 are satisfied

provided that Xo is replaced by xi and a = KB-q, ß = K.
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AN UNCOUNTABLE SET OF INCOMPARABLE DEGREES

J. R. SHOENFIELD

The purpose of this note is to prove the following:1

Theorem. There is an uncountable set of pairwise incomparable de-

grees of recursive unsolvability.

By Zorn's lemma, there is a maximal set of pairwise incomparable

degrees of recursive unsolvability different from 0; we must show that

this set is not countable. Hence our theorem follows from:

Lemma. If a0, ai, • • • is a sequence of degrees different from 0, then

there is a degree b which is incomparable with each a„.

Proof.2 Let an be a function of degree a„; we shall construct a

function ß of degree b. As in [l], ß is constructed by defining induc-

tively a function k such that k(o) =ß(v(a)) with v(a) =lh(n(a)) ; k and

v must satisfy the conditions that n(a) is a sequence number, k(o + 1)

extends k(o), and v(a + \) >v(a). We then have ß(a) = 0c(a + l))o
-1.

Let k(0) = 1. To define v.(a + \), let n = (a)i and e = (a)2. If a is even,

set

K(a + 1) = K(a)-p,M exp({e}"»(e(a)) + 2)

if   {e)a"(v(a))  is defined, and a(a + \) =ic(a) -p,M otherwise.  Then

clearly ß?* {e)an for any function ß such that ß(v(a + \))=K.(a + V).
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1 The problem solved in this paper was suggested to the author by C. Spector.

2 We use the notation of [l ] in the proof.


