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1. Introduction. The well-known Schoenflies extension theorem as-

serts that if J is a simple closed curve in a 2-sphere then the closure

of each of the two complementary domains is a disk with 7 as bound-

ary. That the analogous theorem in a higher dimensional sphere is

false has been shown by numerous counter-examples such as [l; 2].

There is, however, a generalization along a slightly different line.

R. L. Wilder shows that an analogy holds at the level of sphere-like

closed generalized manifolds (abbreviation: gem) and generalized

closed cells [7, Theorem 9.1, p. 312]. He further shows that if A and B

are two generalized closed ra-cells whose boundaries are homeomor-

phic, then the space obtained by putting A and B together along their

boundaries is a sphere-like ra-gem. This is an obvious generalization

of the case of the union of two disks along their boundaries. In this

note, we demonstrate further similarities between ordinary cells and

generalized cells. For the definition of the generalized cell, the reader

is referred to Definition 7.10, p. 287 of [7].

For the definition of ra-gm the reader is referred to Definition 1,

p. 244 of [7] except that we shall require that the local cobetti num-

bers pT(x; X) =0, r^ra and that only the cohomology dimension (with

respect to the defining field), be finite instead of an explicit covering

ra-dimensional assumption. We lose nothing from the theory of ra-gm's

with this weaker assumption. For the definition (first given by White

[ó]) of ra-gm with boundary the reader is referred to [4]. Again we

shall make the change in the dimension assumption. By a (locally)

orientable ra-gm, M = XVJB, with orientable boundary B we mean that

M is an ra-gm with boundary B, such that X is a locally orientable

ra-gm, each component Bi of B is an orientable (ra —l)-gm with the

property that 73¿ is contained in some orientable neighborhood Ui of

M, Ui(~\Ui=4>, for iwtj.

In this note, the mapping theorem of Wilder [8] easily yields:

Theorem 1. Let M = XVJB be a (locally) orientable n-gm with

orientable boundary B. Suppose each component 75,- of B is a sphere-

like (n-l)-gcm. Then the space M* obtained by identifying each Bi

to a point Xi is a (locally) orientable n-gm.

Proof. First, if C=S\Jp is a cone over a space 5 with vertex p.
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it is easy to see that the ith local betti number of C at p is the (i— l)th

betti number of 5. Furthermore, as C — p is a product of 5 with a

ray it follows that C—p is an orientable ra-gm with orientable bound-

ary 5, if 5 is an orientable (ra — l)-gm, [5]. If 5 is a sphere-like orien-

table (ra — l)-gcm, then C is an orientable ra-gm with orientable bound-

ary 5 and hence, in this case, is a generalized closed ra-cell.

For each Bi of M choose an ideal point pi and form the cone Bi\/pi

over Bi. The space M' = MW(Ut- (BiS/pï)) is an ra-gm without bound-

ary according to [4]. The ra-gm M' is orientable or locally orientable

depending on whether X is locally orientable or orientable. Let

/: M—*M* by identifying each cone Bi\Jpi to a point x,-. The space

M* is clearly the space M* of the statement of the theorem obtained

by identifying each 5, of M to a point x¿. As the inverse image f~l(m*)

of each point m*EM* is either a point of A or a generalized closed

ra-cell and hence acyclic, it follows from [8] that M* is a (locally)

orientable ra-gm of the same homology type as M'.

Remark 1. If M and X are connected, M compact then,

77n(M*) « Hl(X), Hn~\M) 8 H*(X) « 77n_1(M*) © E Hn~\Bi),

Hp(M) « Hp(M*),        f* ra, ra - 1,

follows immediately from the Mayer-Vietoris sequence for Cech co-

homology. (77* denotes cohomology with compact supports.) In

particular, if M is a generalized closed ra-cell we have:

Corollary 1. The space obtained from a generalized closed n-cell by

identifying the points of the boundary is a sphere-like n-gcm.

The following seems interesting even for the case in which C is the

closure of the interior of an (ra—1)-sphere imbedded in En.

Corollary 2. Let C be a generalized closed n-cell with K as boundary

and C be a generalized closed (n — \)-cell imbedded in C with K' as

boundary such that K' =Kr\C'. Then C separates C into 2 domains

77j and D2 of which C is the common boundary in C and the sets Di are

generalized closed n-cells.

Proof. Adjoin a cone KVp to K and let /: CyJ(K\Jp)-*C* be

the quotient map of Theorem 1. On (C—C')—K the map/ is a 1-1

local homeomorphism and therefore a homeomorphism. By applying

Corollary 1 to C and C simultaneously, we find that f((C — C) — K)

is the complement in the ra-gcm C* of the (ra— l)-gcm f(C') and has

two  components.   Since / is  a  homeomorphism  on   (C—C')—K,
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(C—C')—K also has two components, say, Di and D2. Let R~i and

K2 be two generalized closed (ra —1) -cells in K such that KAJK2 = K

and Kir\K2 — K' [7, Theorem 9.1, p. 312]. The generalized closed

(ra —2)-cell K' is the common boundary of Ki and K2 in K. The sets

KAJC are sphere-like (ra — l)-gcms [7, Theorem 9.2, p. 312] meeting

C at subsets of its boundary. Hence, there is a complementary domain

Pi of KiVJC in C\J(KVp) meeting no point of K\/p. Clearly,

PiC\P2=<p. Furthermore, any connected set in (C—C')—K is either

in one of P,- or it does not meet PAJP2 at all. But PjUPsCAWT^.

Then it follows that Di is identical with one of Pi and T>2 with the

other. Corollary 2 now follows from [7, Theorem 9.1, p. 312].

In the proof of Theorem 1 we saw that if we formed a cone over a

sphere-like orientable (ra— l)-gcm we obtained a generalized ra-cell.

A type of converse is the following:

Theorem 2. Let X be a locally orientable n-gm. Suppose for some

xEX, there exists an open set 0, containing x, with compact closure O

and boundary 0' and a homeomorphism h: 0—>7?V/>, a cone, such that

h(0') =B and h(x) =p, then 0 is a generalized n-cell.

Proof. As 0 — x is homeomorphic to O'XE1, where El is the open

unit interval, it follows from [5] that 0' is a locally orientable (ra —1)-

gcm. (The paracompactness assumption of [5] is no longer necessary.)

As x corresponds to the vertex of the cone and as the ith local betti

number of X at x is the same as the (i— l)th betti number of 0', it

follows that 0' must have sphere-like homology. That 0' is connected

follows from the fact that the oth augmented betti number must be

zero. Thus 0' is an orientable sphere-like (ra — l)-gcm and conse-

quently 0 is a generalized ra-cell as it is acyclic.

As is well known, any combinatorial 3-manifold is a locally Eu-

clidean 3-manifold. Applying Theorem 2 we establish an analogous

criterion for 3-gms:

Corollary 3. A necessary and sufficient condition that a separable

metric space X be a classical 3-manifold is that X be a 3-gm, and for

each xEX there exists a compact neighborhood such that the neighbor-

hood is homeomorphic to a cone over the boundary of the neighborhood.

Proof. The necessity is obvious. From Theorem 2 we have seen

that the compact neighborhood is a cone over an orientable sphere-

like 2-gcm. (That X be locally orientable is not needed since the

boundary of the cone must be a 2-gm, and consequently, in this case,

must be an orientable 2-gcm.) Of course, here x need not correspond

to the vertex of the cone. The only separable metric orientable sphere-
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like 2-gcm is the 2-sphere, and thus, the corollary follows.

The suspension of a Poincaré space shows that the corollary can

not be extended past dimension 3.

Remark 2. The results of this note are valid for generalized mani-

folds defined over the integers, Z, as well as over a field. The defini-

tion of an ra-gm, X, over Z is analogous to that over a field. When

using integer coefficients, the condition that the local cobetti number,

pn(x; X) =k, means that given a neighborhood U of x we can find

neighborhoods F and W of x, so that, if xEW'EWEVEU, then

the image of H?(W; Z) in 77f(F, Z) under the inclusion is the same

as the image of HC'(W; Z) in 77? ( F; Z) and is free of rank k. Orientabil-

ity of X, over Z, is just the requirement that j*: 77?(F; Z)-*H?(U; Z)

is an isomorphism onto for all connected open sets Fand 7/with com-

pact closures, FC U.

The universal coefficient theorem for Cech cohomology with com-

pact supports easily implies that A is a (orientable, or locally orienta-

ble) ra-gm over any field if A is a (orientable, or locally orientable)

ra-gm over Z. On the other hand, if X is an orientable ra-gm over every

field, (ra depending upon the field), it is unknown whether X is an

orientable ra-gm over Z. However we can show:

Proposition. If X is clc over Z, dimz X < », and X is an orientable

n-gm over Q, the rationals, and Zp, the integers modulo a prime p, for

all primes p, then X is an orientable n-gm over Z.

We remark that the ra of the hypothesis is fixed. Nearly each step

of the proof uses the universal coefficient theorem and the fact that

since X is clc over Z, dimz X < <=o, then given F, an open set whose

closure, compact, is contained in an open set, U, the image of 77C*(F)

in H*(U) is finitely generated [3]. One may fill in the details of the

outline of proof we shall give by constructing the appropriate dia-

grams and using the facts we have just mentioned.

(i) dimzA" = ra.

(ii) If V is open, connected, F compact, C U, open, then

(77?(F; Z)EHne(U; Z)) «Z, where (77?(F; Z)EHnc(U; Z)) means the

image of 77?(F; Z) in H?(U; Z) under the map j* induced by the

inclusion/: VEU.

(iii) If VEVEVEUEW, 77 compact, U connected, then

(H?((U- V); Z)EH?((W- V); Z)) =0.
(iv)If V EV EU EU EW then (77cn(F; Z)_E H?(W; Z))

= (77?(Z7; Z)EH¡(W; Z)) = Z, U and F connected, U compact.

(v) We may as well assume X connected. Let V, W be two open
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connected sets with compact closures; then (H?(V; Z)EH¡(X; Z))

= (Hnc(W;Z)EHnc(X;Z))~Z.

(vi) The local cobetti numbers pr(x; X)=0, r^n. Thus, X is an

orientable ra-gm over Z.

Using the above proposition one can extend Wilder's mapping

theorem [8], to generalized manifolds over the integers. Another type

of extension one can obtain is that the Cartesian product of two

(locally) orientable generalized manifolds over Z is a locally orienta-

ble generalized manifold over Z, and conversely, if a (locally) orienta-

ble generalized manifold over Z is a product of two spaces then both

factors must be (locally) orientable generalized manifolds, over Z.

Hence the theorems and corollaries of this note can be extended to

generalized manifolds and generalized cells defined over Z.
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