REFERENCES

- 1. M. Altman, On the approximate solution of non-linear functional equations, Bull. Acad. Polon. Sci. Cl. III vol. 5 (1957) pp. 457-460.
- 2. ——, Concerning approximate solutions of non-linear functional equations, Bull. Acad. Polon. Sci. Cl. III vol. 5 (1957) pp. 461-465.
- 3. ——, On the approximate solutions of non-linear functional equations in Banach spaces, Bull. Acad. Polon. Sci. Ser. Math. vol. 6 (1958) pp. 19-24.
- 4. L. V. Kantorovich, Some further applications of Newton's method to functional equations (in Russian), Vestnik Leningrad. Univ. Ser. Mat. vol. 2 (1957) pp. 68-103.

CALIFORNIA INSTITUTE OF TECHOLOGY AND ACADEMY OF SCIENCE, WARSAW

AN UNCOUNTABLE SET OF INCOMPARABLE DEGREES

J. R. SHOENFIELD

The purpose of this note is to prove the following:1

THEOREM. There is an uncountable set of pairwise incomparable degrees of recursive unsolvability.

By Zorn's lemma, there is a maximal set of pairwise incomparable degrees of recursive unsolvability different from 0; we must show that this set is not countable. Hence our theorem follows from:

LEMMA. If a_0 , a_1 , \cdots is a sequence of degrees different from 0, then there is a degree b which is incomparable with each a_n .

PROOF.² Let α_n be a function of degree a_n ; we shall construct a function β of degree b. As in [1], β is constructed by defining inductively a function κ such that $\kappa(a) = \overline{\beta}(\nu(a))$ with $\nu(a) = lh(\kappa(a))$; κ and ν must satisfy the conditions that $\kappa(a)$ is a sequence number, $\kappa(a+1)$ extends $\kappa(a)$, and $\nu(a+1) > \nu(a)$. We then have $\beta(a) = (\kappa(a+1))_a - 1$.

Let $\kappa(0) = 1$. To define $\kappa(a+1)$, let $n = (a)_1$ and $e = (a)_2$. If a is even, set

$$\kappa(a+1) = \kappa(a) \cdot p_{\nu(a)} \exp(\{e\}^{\alpha_n}(\nu(a)) + 2)$$

if $\{e\}^{\alpha_n}(\nu(a))$ is defined, and $\kappa(a+1) = \kappa(a) \cdot p_{r(a)}$ otherwise. Then clearly $\beta \neq \{e\}^{\alpha_n}$ for any function β such that $\beta(\nu(a+1)) = \kappa(a+1)$.

Received by the editors April 29, 1959.

¹ The problem solved in this paper was suggested to the author by C. Spector.

² We use the notation of [1] in the proof.

If a is odd, we shall choose $\kappa(a+1)$ so that $\alpha_n \neq \{e\}^{\beta}$ for any function β such that $\bar{\beta}(\nu(a+1)) = \kappa(a+1)$. Since α_n is not recursive, there is a w such that $\alpha_n(w)$ is not equal to

(1)
$$U(\mu y [\operatorname{Ext}(y, \kappa(a)) \& T_1^1(y, e, w)]).$$

If (1) is undefined, i.e., if $(\overline{E}y)(\operatorname{Ext}(y, \kappa(a)) \& T_1^1(y, e, w))$, then $\{e\}^{\beta}(w)$ is necessarily undefined, and we may take $\kappa(a+1) = \kappa(a) \cdot p_{\nu(a)}$. Otherwise, there is a y such that $\operatorname{Ext}(y, \kappa(a))$, $T_1^1(y, e, w)$, and $U(y) \neq \alpha_n(w)$. We may then take $\kappa(a+1)$ to be any extension of y of length greater than $\nu(a)$.

Since $\beta \neq \{e\}^{\alpha_n}$ and $\alpha_n \neq \{e\}^{\beta}$ for all e, b is incomparable with a_n .

REFERENCE

1. S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. vol. 59 (1954) pp. 379-407.

DUKE UNIVERSITY