IMMERSION OF MANIFOLDS OF NONPOSITIVE
CURVATURE

BARRETT O’'NEILL

In [4] Tompkins proved that a flat compact Riemannian manifold
M of dimension # cannot be (isometrically) immersed in Euclidean
(2n—1)-space. Chern and Kuiper conjectured in [2] that the result
holds if the Riemannian (i.e. sectional) curvature K of M is never
positive. An algebraic result verifying this conjecture was found by
Otsuki [3]. We shall prove:

THEOREM. Let M be a compact n-dimensional Riemannian manifold
and let M be a complete simply connected Riemannian manifold of
dimension less than 2n. If the Riemannian curvatures K and K of M
and M satisfy KK =0, then M cannot be immersed in M.

Simple examples involving spheres and tori show that the theorem
fails if either inequality or the simple connectedness of M is deleted.

Following [1] we express the second fundamental form information
of an immersion i: M—M in terms of the difference transformation T,
a function which assigns to each vector x in M,, (the tangent space
to M at m& M) a linear transformation T, from M, to the orthogonal
complement M of di(My,) in M. The natural definition of T is
in terms of the notion of difference of two connections [l], however
it may be described in terms of the classical second fundamental
form S as follows: .S is a function which assigns to each vector
2E& M a symmetric linear operator S, on M,,. If x€ M,, and z& M3,
let T.(z) =S.(x); then uniquely extend T, to be a skew-symmetric
operator on all of M;.,. For our purposes, as indicated above, we
need only the portion of T, defined on di(M,,) or, equivalently, M,.
As a function of x, y& M,,, T,(y) is bilinear and symmetric.

The difference transformation relates the Riemannian curvatures
of M and ¥ as follows: if x and y span a plane P in M,, then

(To(0), Ty()) — || T=)||?
= A 92

This formula, the Gauss equation, is readily obtained from the second
structural equations of M and M.
The following lemma extends a well-known Euclidean fact.

(n K(P) = + K(di(P)).

LEMMA 1. Let i: M—M be an immersion of a compact Riemannian
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manifold in a complete simply connected manifold with Riemannian
curvature K 0. Then there is a point mE M and a vector 3& M,% such
that (T.(x), 2) <O for all nonzero x < M,,.

Proor. Fix a point 7 in M and use the following notation: m, a
point of M such that i(m) has maximum distance from 7; o: [0, 1]
—M, the unique geodesic from m to i(m); z, the velocity vector
o(1) of o at i(m). If xEdi(M,) there is a differentiable map r: [0, 1]
X [0, 1]—=M such that (1) 7(-, 0) =0, (2) for each v& [0, 1], 7(-, v)
is a geodesic, (3) 7(0, -) = and r(1, -)E(M), (4) if X is the vector
field on o such that X(u) is the velocity of r(u, -) at v=0, then
X (1) =x. Let /(v) be the length of r(-, v), that is, the distance from
m to r(1, v) E2(M). Obviously /(0) =0 and //(0) 0. The vanishing
of the first variation implies & M,:. By the Synge formula for the
second variation [1] we have

#'0) = [ (X = K, e A X} + (2.0, 2

where s is the length of ¢, and X’ is the covariant derivative of X.
Since K <0, the integral term is positive if x>0, hence (T.(x), z) <0.

PROOF OF THE THEOREM. Following Tompkins’ scheme we reduce
the proof to a problem in linear algebra. Let i: M— M be an immer-
sion, where M and M are as described in the theorem, except that
no restriction is made on the dimension of M. Let m and z be as in
Lemma 1. From the formula (1) and the condition K <K we get
(T.(x), T,,(y))§||T,;(y)”2 for all x, yE M,.. We need only prove that
dimension M,: =, and this follows from

LeEmMMA 2. Let U and V be finite-dimensional real vector spaces, V
with an inner product. Suppose that for each x & U there is a linear trans-
formation T,: U—V such that:

(1) (Tu(x), Ty S| T-)||? for all z, yEU.

(2) T.(y) ts bilinear and symmetric in x and 7y.

(3) Thereis a vector 2V such that (T(x), 2) <O for all nonzero x in
U. Then dimension V =dimension U.

ProOF. Suppose the contrary; then for every #& U there is a non-
zero v& U such that T, (v) =0, hence (T, (#), T,(v))<0. Consider the
real-valued function f on U— {0} for which

(Tu(u); z) .
| Zu(@)]) ||

Since f is continuous and constant on lines through the origin, it has a

f(u) =
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minimum, say f(x). Let y be a nonzero vector such that T,(y) =0 and
(Tx(x), Ty(y))=0. Note that T.(x) and T,(y) are independent, for
otherwise we may assume T.(x)4 T,(y) =0, which contradicts (3).
Let P be the plane spanned by these two vectors, and let z*- be the
set of vectors orthogonal to z. Since T.(x) is not in z*, the subspace
PNz*is 1-dimensional. Let p be the unique unit vector in P such that
(p, 2)<0 and p is orthogonal to PNz*. Clearly (p, 2)<({(q, z) if gis a
unit vector in P different from p. Now the definition of p together
with the inequalities (T.(x), T,(y)) =0, (Tu(x), 2)<0, (T,(¥), 2)<0
imply that p lies between T,(x) and T(y), that is, that we may write
p=NT,(x)+u2Ty(y). Thus p = TrzpuyAx+py). In view of the mini-
mality properties of p and T.(x) we must have T.(x) a positive scalar
multiple of . But since p is orthogonal to P/N\z*, this implies (T, (y), z)
=0, a contradiction.

It is clear that the theorem holds in slightly more general form,
patterned on the full Chern-Kuiper conjecture, namely: if there is
at each point m of M a ¢g-dimensional subspace S,, (¢=2) of M,, such
that K <K holds when K is restricted to planes in any S,,, then im-
mersion is impossible if the dimension of M is less than n+g.
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