IMMERSION OF MANIFOLDS OF NONPOSITIVE CURVATURE

BARRETT O'NEILL

In [4] Tompkins proved that a flat compact Riemannian manifold M of dimension n cannot be (isometrically) immersed in Euclidean (2n-1)-space. Chern and Kuiper conjectured in [2] that the result holds if the Riemannian (i.e. sectional) curvature K of M is never positive. An algebraic result verifying this conjecture was found by Otsuki [3]. We shall prove:

THEOREM. Let M be a compact n-dimensional Riemannian manifold and let \overline{M} be a complete simply connected Riemannian manifold of dimension less than 2n. If the Riemannian curvatures K and \overline{K} of M and \overline{M} satisfy $K \leq \overline{K} \leq 0$, then M cannot be immersed in \overline{M} .

Simple examples involving spheres and tori show that the theorem fails if either inequality or the simple connectedness of \overline{M} is deleted.

Following [1] we express the second fundamental form information of an immersion $i: M \to \overline{M}$ in terms of the difference transformation T, a function which assigns to each vector x in M_m (the tangent space to M at $m \in M$) a linear transformation T_x from M_m to the orthogonal complement M_m^{\perp} of $di(M_m)$ in $\overline{M}_{i(m)}$. The natural definition of T is in terms of the notion of difference of two connections [1], however it may be described in terms of the classical second fundamental form S as follows: S is a function which assigns to each vector $z \in M_m^{\perp}$ a symmetric linear operator S_x on M_m . If $x \in M_m$ and $z \in M_m^{\perp}$, let $T_x(z) = S_x(x)$; then uniquely extend T_x to be a skew-symmetric operator on all of $\overline{M}_{i(m)}$. For our purposes, as indicated above, we need only the portion of T_x defined on $di(M_m)$ or, equivalently, M_m . As a function of $x, y \in M_m$, $T_x(y)$ is bilinear and symmetric.

The difference transformation relates the Riemannian curvatures of M and \overline{M} as follows: if x and y span a plane P in M_m , then

(1)
$$K(P) = \frac{\langle T_x(x), T_y(y) \rangle - ||T_x(y)||^2}{||x \wedge y||^2} + \overline{K}(di(P)).$$

This formula, the Gauss equation, is readily obtained from the second structural equations of M and \overline{M} .

The following lemma extends a well-known Euclidean fact.

LEMMA 1. Let $i: M \rightarrow \overline{M}$ be an immersion of a compact Riemannian Received by the editors March 20, 1959.

manifold in a complete simply connected manifold with Riemannian curvature $\overline{K} \leq 0$. Then there is a point $m \in M$ and a vector $z \in M_m^{\perp}$ such that $\langle T_x(x), z \rangle < 0$ for all nonzero $x \in M_m$.

PROOF. Fix a point \overline{m} in \overline{M} and use the following notation: m, a point of M such that i(m) has maximum distance from \overline{m} ; $\sigma \colon [0, 1] \to \overline{M}$, the unique geodesic from m to i(m); z, the velocity vector $\sigma(1)$ of σ at i(m). If $x \in di(M_m)$ there is a differentiable map $r \colon [0, 1] \times [0, 1] \to M$ such that $(1) \ r(\cdot, 0) = \sigma$, (2) for each $v \in [0, 1]$, $r(\cdot, v)$ is a geodesic, $(3) \ r(0, \cdot) = \overline{m}$ and $r(1, \cdot) \in i(M)$, (4) if X is the vector field on σ such that X(u) is the velocity of $r(u, \cdot)$ at v = 0, then X(1) = x. Let l(v) be the length of $r(\cdot, v)$, that is, the distance from \overline{m} to $r(1, v) \in i(M)$. Obviously l'(0) = 0 and $l''(0) \leq 0$. The vanishing of the first variation implies $z \in M_m^{\perp}$. By the Synge formula for the second variation [1] we have

$$sl''(0) = \int_0^1 \{ ||X'||^2 - \overline{K}(\dot{\sigma}, X) ||\dot{\sigma} \wedge X|| \} + \langle T_x(x), z \rangle$$

where s is the length of σ , and X' is the covariant derivative of X. Since $\overline{K} \leq 0$, the integral term is positive if $x \neq 0$, hence $\langle T_x(x), z \rangle < 0$.

PROOF OF THE THEOREM. Following Tompkins' scheme we reduce the proof to a problem in linear algebra. Let $i \colon M \to \overline{M}$ be an immersion, where M and \overline{M} are as described in the theorem, except that no restriction is made on the dimension of \overline{M} . Let m and z be as in Lemma 1. From the formula (1) and the condition $K \subseteq \overline{K}$ we get $\langle T_x(x), T_y(y) \rangle \leq ||T_x(y)||^2$ for all $x, y \in M_m$. We need only prove that dimension $M_m^1 \geq n$, and this follows from

LEMMA 2. Let U and V be finite-dimensional real vector spaces, V with an inner product. Suppose that for each $x \in U$ there is a linear transformation $T_x: U \rightarrow V$ such that:

- (1) $\langle T_x(x), T_y(y) \rangle \leq ||T_x(y)||^2$ for all $x, y \in U$.
- (2) $T_x(y)$ is bilinear and symmetric in x and y.
- (3) There is a vector $z \in V$ such that $\langle T_x(x), z \rangle < 0$ for all nonzero x in U. Then dimension $V \ge dimension U$.

PROOF. Suppose the contrary; then for every $u \in U$ there is a non-zero $v \in U$ such that $T_u(v) = 0$, hence $\langle T_u(u), T_v(v) \rangle \leq 0$. Consider the real-valued function f on $U - \{0\}$ for which

$$f(u) = \frac{\langle T_u(u), z \rangle}{\|T_u(u)\| \|z\|}.$$

Since f is continuous and constant on lines through the origin, it has a

minimum, say f(x). Let y be a nonzero vector such that $T_x(y) = 0$ and $\langle T_x(x), T_y(y) \rangle \leq 0$. Note that $T_x(x)$ and $T_y(y)$ are independent, for otherwise we may assume $T_x(x) + T_y(y) = 0$, which contradicts (3). Let P be the plane spanned by these two vectors, and let z^\perp be the set of vectors orthogonal to z. Since $T_x(x)$ is not in z^\perp , the subspace $P \cap z^\perp$ is 1-dimensional. Let p be the unique unit vector in P such that $\langle p, z \rangle < 0$ and p is orthogonal to $P \cap z^\perp$. Clearly $\langle p, z \rangle < \langle q, z \rangle$ if p is a unit vector in p different from p. Now the definition of p together with the inequalities $\langle T_x(x), T_y(y) \rangle \leq 0$, $\langle T_x(x), z \rangle < 0$, $\langle T_y(y), z \rangle < 0$ imply that p lies between $T_x(x)$ and $T_y(y)$, that is, that we may write $p = \lambda^2 T_x(x) + \mu^2 T_y(y)$. Thus $p = T_{\lambda x + \mu y}(\lambda x + \mu y)$. In view of the minimality properties of p and $T_x(x)$ we must have $T_x(x)$ a positive scalar multiple of p. But since p is orthogonal to $P \cap z^\perp$, this implies $\langle T_y(y), z \rangle \geq 0$, a contradiction.

It is clear that the theorem holds in slightly more general form, patterned on the full Chern-Kuiper conjecture, namely: if there is at each point m of M a q-dimensional subspace S_m $(q \ge 2)$ of M_m such that $K \le \overline{K}$ holds when K is restricted to planes in any S_m , then immersion is impossible if the dimension of \overline{M} is less than n+q.

REFERENCES

- 1. W. Ambrose, The use of the structural equations in the classical calculus of variations (to appear in the J. Indian Math. Soc.)
- 2. S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Ann. of Math. vol. 56 (1952) pp. 422-430.
- 3. T. Otsuki, On the existence of solutions of a system of quadratic equations and its geometrical application, Proc. Japan. Acad. vol. 29 (1953) pp. 99-100.
- 4. C. Tompkins, Isometric embedding of flat manifolds in Euclidean space, Duke Math. J. vol. 5 (1939) pp. 58-61.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY