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In [4] Tompkins proved that a flat compact Riemannian manifold

M of dimension ra cannot be (isometrically) immersed in Euclidean

(2ra—l)-space. Chern and Kuiper conjectured in [2] that the result

holds if the Riemannian (i.e. sectional) curvature K of M is never

positive. An algebraic result verifying this conjecture was found by

Otsuki [3]. We shall prove:

Theorem. Let M be a compact n-dimensional Riemannian manifold

and let M be a complete simply connected Riemannian manifold of

dimension less than 2ra. If the Riemannian curvatures K and K of M

and M satisfy K^K^O, then M cannot be immersed in M.

Simple examples involving spheres and tori show that the theorem

fails if either inequality or the simple connectedness of M is deleted.

Following [l] we express the second fundamental form information

of an immersion i: M—*M in terms of the difference transformation T,

a function which assigns to each vector x in Mm (the tangent space

to Mat mEM) a linear transformation Tz from Mm to the orthogonal

complement M„ of di(Mm) in M,(m). The natural definition of T is

in terms of the notion of difference of two connections [l], however

it may be described in terms of the classical second fundamental

form 5 as follows: 5 is a function which assigns to each vector

zEM„ a symmetric linear operator S¡ on Mm. If xEMm and zEM„,

let Tx(z)=Sz(x); then uniquely extend Tx to be a skew-symmetric

operator on all of M,(m). For our purposes, as indicated above, we

need only the portion of Tx defined on di(Mm) or, equivalently, Mm.

As a function of x, yEMm, Tx(y) is bilinear and symmetric.

The difference transformation relates the Riemannian curvatures

of M and M as follows: if x and y span a plane P in Mm, then

<r^,y»>-|r^.+

II* A y\\
This formula, the Gauss equation, is readily obtained from the second

structural equations of M and M.

The following lemma extends a well-known Euclidean fact.

Lemma 1. Let i: M—*M be an immersion of a compact Riemannian
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manifold in a complete simply connected manifold with Riemannian

curvature K^O. Then there is a point mEM and a vector zEM„ such

that (Tx(x), z)<0 for all nonzero xEMm.

Proof. Fix a point m in M and use the following notation: m, a

point of M such that i(m) has maximum distance from m; a; [0, l]

—>M, the unique geodesic from m to i(m) ; z, the velocity vector

tr(l) of a at i(m). If xEdi(Mm) there is a differentiable map r : [0, 1 ]

X[0, l]->Msuch that (1) r(-, 0)=a, (2) for each vE{0, l],r(-,v)

is a geodesic, (3) r(0, •) =m and r(\, -)Ei(M), (4) if X is the vector

field on a such that X(u) is the velocity of r(u, •) at v = 0, then

X(l)=x. Let l(v) be the length of r(-, v), that is, the distance from

in to r(l, v)Ei(M). Obviously /'(0)=0 and /"(0)^0. The vanishing

of the first variation implies zEM±. By the Synge formula for the

second variation [l] we have

sl"(0) =   f   {||A'||2 - K(à, X)\\àAX\\\ + (Tx(x), z)
J 0

where 5 is the length of a, and X' is the covariant derivative of X.

Since K^O, the integral term is positive if x^O, hence (Tx(x), z)<0.

Proof of the theorem. Following Tompkins' scheme we reduce

the proof to a problem in linear algebra. Let i: M—>M be an immer-

sion, where M and M are as described in the theorem, except that

no restriction is made on the dimension of M. Let m and z be as in

Lemma 1. From the formula (1) and the condition K^K we get

(Tx(x), Ty(y))s\\Tx(y)^2 for all x, yEMm. We need only prove that

dimension M~¡±n, and this follows from

Lemma 2. Let U and V be finite-dimensional real vector spaces, V

with an inner product. Suppose that for each xEU there is a linear trans-

formation Tx : Í7—> F such that :

(1) (7x(x), Ty(y))s\\Tx(y)\\2for all x, yEU.
(2) Tx(y) is bilinear and symmetric in x and y.

(3) There is a vector zEV such that (Tx(x), z) <0for all nonzero x in

U. Then dimension V^dimension U.

Proof. Suppose the contrary; then for every uEU there is a non-

zero i;£(7such that Tu(v) =0, hence (Tu(u), Tv(v))^0. Consider the

real-valued function/on U— {0} for which

(Tu(u), z)
J(U)    =    J.-7TT7-J.    •

\\Tu(u)\\\\z\\

Since/ is continuous and constant on lines through the origin, it has a
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minimum, say/(x). Let y be a nonzero vector such that Tx(y) =0 and

(Tx(x), Ty(y))^0. Note that Tx(x) and Ty(y) are independent, for

otherwise we may assume Tx(x) + Ty(y) =0, which contradicts (3).

Let P be the plane spanned by these two vectors, and let z^ be the

set of vectors orthogonal to z. Since Tx(x) is not in zx, the subspace

PC\zL is 1-dimensional. Let p be the unique unit vector in P such that

(p, z)<0 and p is orthogonal to Pr\zL. Clearly (p, z)<(q, z) if q is a

unit vector in P different from p. Now the definition of p together

with the inequalities (Tx(x), Ty(y))^0, (Tx(x), z)<0, (Ty(y), z)<0

imply that p lies between Tx(x) and T„(y), that is, that we may write

p=\2Tx(x)+ß2Ty(y). Thus p = T\x+llll(\x+py). In view of the mini-

mality properties of p and Tx(x) we must have Tx(x) a positive scalar

multiple of p. But since p is orthogonal to Pí^z1, this implies (Tv(y),z)

2:0, a contradiction.

It is clear that the theorem holds in slightly more general form,

patterned on the full Chern-Kuiper conjecture, namely: if there is

at each point m oí M a ç-dimensional subspace Sm (q 2:2) of Mm such

that K^K holds when K is restricted to planes in any 5m, then im-

mersion is impossible if the dimension of M is less than n+q.
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