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Our purpose here is to obtain intrinsic functorial characterizations

of the functors Horn and ® and thus to account in part for the dis-

tinguished role played by then in homological algebra. In all that

follows, A, r are rings with unit, Z the ring of integers. The category

of all T-A-bimodules with F operating on the left, A on the right, is

denoted by tSIZa, the category of left A-modules (T-modules) by

A3Il(r3TC), etc. All functors are assumed additive. We use throughout

the terminology of [l].

Theorem 1. Let T be a right-exact covariant functor on a3TC to r9H

which commutes with direct sums (i.e., is of type Z2). Then there is an

object C in tSTCa and a natural equivalence of functors \p: C®i.**T.

Proof. Given an object A of a9TC and a£^4, define <¡>a: A—>A by

<£a(A) =\a. Then T<pa: TA-^TA and we define a function ipA: TAXA

—>TA by ipA(h, a) — T4>a(k), a£TA, a£^4. It is easily checked that

ipo'. TAX A—>7A gives TA the structure of a right A-module, com-

patible with its left T-module structure. Thus we have made TA

into an object of rSTÍAl TA, considered as an object of tSTCa, will be

denoted by C.

Now for any A, \pA : CXA—*TA and a simple computation shows

that i/'o is bilinear. Hence ^¡f can be lifted uniquely to a r-homomor-

phism \pA: C®aA-+TA, and the maps ipA form a natural transforma-

tion of functors. Moreover, ^A is the natural isomorphism of C®aA

onto TA. Since T and C® a both commute with direct sums, it fol-

lows that \pF is an isomorphism whenever F is a free A-module.

Finally, let A be any A-module; choose an exact sequence

0 -> R -> F -^ A -» 0

with F free. Since T and C® a are right-exact, we have an induced

commutative diagram with exact rows

C®R-*C®F^>C®A-*0

i^ If l$A
TR   -^    TF   -*    TA   ->0
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from which it is apparent that \}/A is an epimorphism. Since A was

arbitrary, \¡/s is an epimorphism. An easy chase about the diagram

then reveals that ipA is a monomorphism, q.e.d.

Now suppose A is left-Noetherian and let a3TC be the category of

finitely-generated left A-modules. Then we can modify the latter part

of the above proof by choosing the sequence 0—»i?—>F—>,4—>0 so

that F, and therefore R, is finitely generated. Since every functor

commutes with finite direct sums, we get

Theorem 2. // A is left-Noetherian and if T is any right-exact co-

variant functor on a3TC to r9TC, then there is an object C of t3TCa and a

natural equivalence of functors \p: C®a^T.

For example, if A is left-Noetherian and A is a left A-module with

dimA^n, then ExtA(,4, B) ~ExtnA(A, A)®aB for each finitely-

generated B.

Theorem 3. Let T be any left-exact contravariant functor on a9TC to

r3TC which converts direct sums into direct products {i.e., is of type R\T).

Then there is a left A-T-bimodule C and a natural equivalence of

functors \p: T^Hom^Ç , C).

The proof of Theorem 3 is completely analogous to that of Theorem

1, and is omitted. It can be varied to provide an analogue of Theorem

2. These theorems are crucially dependent on the possibility of repre-

senting an arbitrary module as a quotient module of a direct sum of

copies of A. To characterize the Horn functor in the covariant vari-

able, we first establish the existence of a construction dual to this.

Definitions. If A is a module and X any set, the module Ax is

defined to be the direct product of copies of A indexed by X, or

equivalently the set of all functions from X to A under pointwise

addition and scalar multiplication. If A and V are two left modules,

the evaluation map1 for A and V is the homomorphism

given by aa(f) =f(a). A left module V is distinguishing provided

(i) V is injective and (ii) for each left module A, the evaluation map

for A and F is a monomorphism. (Condition (ii) can be restated:

given any nonzero element a of a left module A, there exists/: A—>V

such that/(a)5¿0.)

Lemma 4. For every ring A, there exists a distinguishing left A-module.

Proof. Let V be the direct product of all the modules A/I, I a left

1 This terminology is due to J. L. Kelley.
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ideal of A. Let V be injective, V"D V. If O^aÇ^A, there is a natural

map /' : Aa—»A/7a such that fa ¿¿0, where Aa is the submodule of A

generated by a and Ia is the annihilator ¡deal of a. Since V is injective,

/' can be extended to a map/: A—+V with fa ¿¿0.

We remark that the above construction is highly inefficient; if

A = Z, then we can take for V the group of rationals mod one.

Lemma 5. Let T be a functor from a9TC to r3TC which commutes with

inverse limits {i.e., is of type i?n*). Then T commutes with direct prod-

ucts.

For an arbitrary direct product is the inverse limit of finite direct

products, and every additive functor commutes with finite direct

products.

Theorem 6. Let T be a covariant left-exact functor from a9TC to z9H

which commutes with inverse limits. Then there exists a left A-module C

and a natural equivalence of functors xp: HomA(C, ) ~ T.

Proof. By Lemma 4, we choose a distinguishing left A-module V

and set C— VTV. Let eÇzTVTV be the identity function; we regard

e as a member of TC by means of Lemma 5.

For each left A-module A, we define rjA'- Hom(C', A)—>TA by

VA{f) = Tf{e),       fenom{C',A).

The maps r¡A. yield a natural transformation Hom(C, )—»7\ We

claim that 777 maps Hom(C, V) onto TV. For if v^TV and/ is the

i>th coordinate projection of C = VTV onto V, then r¡v{f) = Tf(e) —v,

because T is of type i?n by Lemma 5.

We next describe the kernel of i\v. If M is any submodule of C, we

shall identify TM with the submodule Im Ti of TC, where i: M—*C

is the inclusion ; this is possible because T is left-exact. Let C be the

intersection of all submodules M of C such that e£.TM. Now the

family of such submodules M together with all their inclusion maps

make up an inverse limit system, whose inverse limit is C. Since T

commutes with inverse limits and preserves inclusions, it follows that

TC is the intersection of the submodules TM of TC. Hence, in par-

ticular, e£TC. It follows that if r¡Y(J) = Tf(e) =0, then Ker/DC, and

conversely, if Ker/DC then e£T Ker/=Ker Tf, so »Jf(/)=0. Thus

Ker tjf« Horn{C/C, V).

Since e£ TC, we can define a natural transformation^: Honu (C, )

^rby

Mf) - Tf{e),       /£Hom(C,^).



8 C. E. WATTS

The exact sequence 0—*C—*C'—*C'/C—*0 induces an exact sequence

0 -> Hom(CyC, V) -* Hom(C, V) -* Hom(C, V) -> 0

because V is injective. On the other hand, we have shown that the

sequence

0 -* Hom(C'/C, V) ->Hom(C", V) % TV -* 0

is exact. Hence Hom(C, V) « TV and it ¡is easy to see that yV is the

natural isomorphism arising from the last two sequences.

From here on, the proof proceeds much like that of Theorem 1.

Let A be any left A-module. The exact sequence

0-> A -^ J/Homu,y> _> Coker a _> o,

where a is the evaluation map, yields a commutative diagram

0 -> Horn (C, A) -> Horn (C, F)HomMV) -* Horn (C, Coker a)

•r y y

0-►   TM-► 7;T/HomM,y) ->  T Coker a

in which the central vertical arrow is an isomorphism. We prove as

before that each \pA is an isomorphism, so that $ is in fact a natural

equivalence, q.e.d.
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