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It is our purpose to establish some new characterizations of con-

vex sets by means of local properties and to derive as a consequence

certain known results. This will be done for sets in a topological

linear space 7, such a space being a real linear space with a Haus-

dorff topology such that the operations of vector addition x+y and

scalar multiplication ax are continuous in both variables jointly [3].

The principal results are contained in Theorems 4 and 5. In order to

describe matters simply, the following notations are used.

Notations. The interior, closure, boundary and convex hull of a

set 5 in 7 are denoted by int S, cl .S, bd 5 and conv 5 respectively.

The closed line segment joining xES and yES is indicated by xy,

whereas L(x, y) stands for the line determined by x and y. The in-

terior of a set 5 relative to the minimal linear variety containing it

is denoted by intv 5. Set union, intersection and difference are de-

noted by U, • and ~ respectively. Vector addition and subtraction

are denoted by + and — respectively. We let 0 and </> stand for the

empty set and the origin of 7 respectively.

In the statements of theorems and definitions the names of previ-

ous authors are indicated for historical purposes.

Definition 1. Let SEL. A point xEbd S is called a point of mild

convexity of S if x is not the midpoint of any segment uv with Op^uv

~xCint 5.

It is desirable to compare this definition with those given by Tietze

[5] and by Leja and Wilkosz [4]. See also Kaufman [2]. For a brief

summary of earlier results see Bonnesen and Fenchel [l, p. 7].

Definition 2. 7e/ xEbd S, where SEL. The point x is a point of

weak or strong convexity of S, or a point of weak or strong concavity of

S, if there exists a neighborhood N(x) of x and a linear functional f with

f(x) = c such that the following conditions hold :

(a) (Tietze). The point x is a point of weak convexity of S if f(y) >c

with yEN(x)~x implies y ES. (For strong convexity replace f(y) >c by

f(y)^c.)
(b) (Leja and Wilkosz). The point x is a point of strong concavity of

S if f(y) ^cwith y£7V(x)~x implies yES. (For weak concavity replace

f(y)úcbyf(y)<c.)
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As observed by Tietze [5], the following theorem of Leja and

Wilkosz holds only in 72, the two-dimensional normed linear space.

Theorem 1 (Leja and Wilkosz). Each open connected nonconvex

set in L2 has at least one point of strong concavity (see Definition 2, (b)).

Hence, to remove the restriction to 72, Tietze [5] proved the fol-

lowing theorem for sets in 7„, the finite ra-dimensional case. It also

holds in 7.

Theorem 2 (Tietze) . Let S be an open connected set in a topological

linear space 7. If each point of bd S is a point of weak convexity of S

(see Definition 2, (a)), then S is convex.

The concept in Definition 1 is a natural one for obtaining a form

of the theorem of Leja and Wilkosz [4] for sets in 7. The following

Theorem 3 implies Theorem 2, whereas Theorem 1 implies Theorem 3

only for sets in 72, the two-dimensional case.

Theorem 3. Let S be an open connected set in a topological linear

space 7, and suppose each point x£bd S is a point of mild convexity

of S (see Definition 1).

77zera 5 is convex.

Proof. Since S is polygonally connected [3], to prove Theorem 3,

it is sufficient to prove that xzES, zyES implies xyES. Let 772 be a

two-dimensional plane containing x, y and z. Then let K be the com-

ponent of 5-772 containing x, y and z. Theorem 1, applied to K, im-

plies that K is convex, so that xyES.

Note. A very short proof of Theorem 1 of Leja and Wilkosz exists,

and it is given here for completeness. To do this, start as in the above

paragraph, so that we merely need to show that xyES. Suppose

that xy(\_S. Let S* denote the set of those boundary points of 5

which are in the triangle conv(x'WyWz) where x£intv x'z and

x'zES. Then conv 5*Cconv(x'UyWz). It is a very simple matter

to show that there exists a point pES*-conv S* which is an exposed

point of conv S*, i.e. there exists a line of support 7i to conv 5* such

that L\- conv S* = p. Moreover, one can choose p so that pEx'y-

Since pEx'z^Jzy Ont S, and since p is an exposed point of conv S*,

it is trivial to verify that p is a point of strong concavity of 5 (see

Definition 2, (b)).

The following theorem extends Theorem 3 to connected sets with-

out the assumption of openness.

Definition 3. A hyper plane 77 strictly separates a set S if each com-

ponent of the complement of 77 intersects S. The line 7i pierces a set S if
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each hyperplane containing 7i strictly separates S.

Theorem 4. Let S be a closed connected set in a topological linear

space 7, with int conv 5^0. Assume that each point x£bd S is a point

of mild convexity of S (see Definition 1). Also assume that each line Lx

through x£bd S which pierces S contains a segment xy such that

Op^intv xyCint S.

Then S is convex.

Proof. Since int conv S^O, let «Ont conv 5e and vEbd S~u.

Clearly each hyperplane containing uv must strictly separate S,

otherwise uEbd conv 5. Hence, by hypothesis, v is linearly ac-

cessible from int S, so that int S^O. Since 7 is a topological linear

space, each component of int 5 is open. Let K be a component of

int S. Since each boundary point of K is a boundary point of S, the

set K satisfies the hypotheses of Theorem 3. Hence, K is convex. Since

7 is a topological linear space, the cl K is convex [3]. Suppose that

el K?¿S, and let yG>S~cl K. Choose a point z£int K, and consider a

two-dimensional plane 772 containing zy. Let H2-K = C, so that C is a

two-dimensional convex body, that is, intv C^O. Since the set of

points in bd C at each of which there exists a unique line of support

to C is dense in bd C, there exists a point x£bd C (sufficiently close

to yz-bd C) through which a unique line of support 7i to C passes

which strictly separates y and z. Each hyperplane 77 containing 7i

strictly separates S. This follows from the fact that zEH if and only

if y EH; also if z(E77, then z£int 5 implies that 77 separates 5. Since

bd KEbd S, the hypothesis implies there exists a segment xpELi

such that O^intv x^Ont S. Since (x+£)/2£int 5, relative to 772,

there exists a two-dimensional convex set GC772 such that (x+p)/2

Cintv G, and such that G Ont S. Let K~i be the component of int S

which contains GWintv xp. Since, by Theorem 3, each component

of int S1 is convex, the set K~i is convex, and hence conv (GWintv xp)

EKi. However, since Lx is the unique line of support to C at x, and

since intv xpEKi-Li, it follows that K-Ki^O. This contradicts the

fact that K is a component of int 5. Hence, S = c\ K, and the theorem

is proved.

Definition 4. Let SEL with pES. The set S is said to have a radius

of support relative to p at each of its boundary points uniformly locally

if the following holds: For each point xEbd S there exists a neighborhood

N(x) such that for each point yEN(x) -bd 5 we have S-R(y, p)

■ {N(x)+y — x] =0, where R(y, p) is the relatively open half-line of the

line L(y, p) having endpoint y, and not containing p, and where N(x)

+y — x is the translate of N(x) to the point y.
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Theorem 5. Let S be a closed connected set in a topological linear

space 7, with int S?±0. Suppose that each point x£bd S is a point of

mild convexity of S (see Definition 1). Also suppose there exists a point

pE'mt S such that S has a radius of support relative to p at each of its

boundary points uniformly locally.

Then S is convex.

Proof. In a topological linear space 7, as a basis of fundamental

neighborhoods of the origin </>, it is always possible to restrict oneself

to neighborhoods which are starshaped and centrally symmetric with

respect to <f>. Since each translate and each nonzero scalar multiple of

each neighborhood of <j> is a neighborhood, we may restrict ourselves

entirely to such neighborhoods [3]. We will do so throughout the

following proof.

Let K be that component of int 5 which contains the point p. Since

K satisfies the hypotheses of Theorem 3, the set K is convex. Since 5

is closed, the cl K is a convex subset of S, and bd KEbd S. Suppose

that el K¿¿S. Then since S is connected, there exists a point x£bd K

which is a limit point of S^cl K. Without loss of generality, assume

that x is the origin <p. This may be accomplished without changing

hypotheses by translating S so that x goes to the origin <p. Let Vi and

V2 be neighborhoods of x=</> (centrally symmetric and starshaped

relative to <¡>) such that V2+V2EVU Vi+ Fj EN(<f>). Since £6 int K,

we have intv £</>Ont K. Choose a point g£(intv p<p) ■ V2. Let U be

a neighborhood of q contained in V2-K (centrally symmetric and star-

shaped relative to q). Let V3=(U — q)- V2, so that V3 is a neighbor-

hood of <j>. We have V%EV2, Vs+qEV2. Since <f> is a limit point of

S~clK, there exists a point y £ F3-(.S'~cl7<"). Hence, z=y+qE V3+q.

Since the segment qzEV3+q, we have r = py■ qzEV%+q. Since

Vz+qEV2-K, we have rEV2-K. Also yEV2~c\K. Hence, let

ry-(bd K)=u. Since u=\r + (\— X)y, where 0<X<1, and since

V2+V2EV\, we have uEVi. Since — uEVi, yEVi, we have

— u+yEVi+ViEAf(4>). This implies that yEN(<p)+u. However,

this contradicts the hypothesis that uy- (N(<p)+u) • (S~u) =0, since

yES. Hence, 5 = cl K, and the theorem is proved.

The uniformity of the local radial support property in Theorem 5

cannot be omitted, for consider the following set SEE2, where E2 is

the Euclidean plane with coordinates (xi, x2). Let Si

= {(xi, X2):Xi+x^l] and 52=[(x!, x2): x1 + (x2-2)2 = l]. Now let

S = SAJS2, p = (0, 0). The set S satisfies all the hypotheses of Theo-

rem 5, except the radial support property is not uniform on account

of the point (0, 1).
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Definition 5 (Tietze, see Definition 2, (a)). If x is a point of weak

convexity of a set SEL, all those points y EL for which f(y)>C,

yEN(x) form a half-cell of support to S at x.

Corollary to Theorem 5 (A generalization of a theorem of Tietze

[5]). I. Suppose that S is a closed connected set in a topological linear

space 7, and suppose int S9^0.

II. Suppose for each point x£bd S there exists a neighborhood N(x)

of x such that for each point yEA¡(x) -bd S, there exists a half-cell of

support of N(x) +y — x to S at y.

Then S is convex.

Proof. Hypothesis II of this corollary implies the last hypotheses

of Theorem 5.

Remark. If in hypothesis II of the corollary we assume that

N(x) = N(<j>)+x, where N(<p) is a neighborhood of the origin <f>, then

we obtain for 7 the simplest generalization of the theorem of Tietze

[SJ. If S is locally compact, we may weaken hypothesis II in the

the corollary so that it holds on a dense subset of bd S, yielding as a

result a theorem for sets in 7n of the type studied by Kaufman [2].
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