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We recall that an H-space consists of a topological space T with a

base point eET and a (continuous) map V: 7X7—> 7 such that

Vî~7 and V/~7, where i and j are defined by i(t) = (t, e) and j(t)

= (e, t), 7 is the identity map of T, and "~" means "homotopic rela-

tive to e." The multiplication V is homotopy-associative if

(1.1) V(VX7)~ V(7X V);

it is homotopy-commutative if

(1.2) PV~V

where p is defined by p(s, t) = (t, s),  (s, tET). We shall assume

throughout that T is arcwise connected.

Let 77 be an associative and anticommutative graded if-algebra

with unit 1, where ii is a field. We assume throughout that 77'= 0

if i<0, and 77° = 7C-1. Let 77+ denote the submodule spanned by the

elements of positive degree. 77 is a Hopf algebra over K if there is an

algebra homomorphism A: 77—>77®77 (regarding 77®77 as a graded

7£-algebra in the usual way) such that

A"(x) = A(x) - A'(x) EH+ ® H+, xE 77,

where A': 77—>77®77 is defined by

A'(l) = 1 ® 1,        A'(x) = x ® 1 + 1 ® x, x E 77+.

We shall refer to A as the coproduct.

The coproduct is associative if

(1.3) (A ® 7)A = (7 ® A)A

where 7 is the identity map of 77; it is anticommutative if

(1.4) 0A = A,

where B is defined by

6(x ® y) = (— l)ify ® x, x E 7?\ y E 77'.

By a Hopf subalgebra we mean a graded subalgebra G such that

A(G)EG®G.
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It is well-known that the cohomology algebra H*(T, K), where T is

an 77-space and K is a field, is a Hopf algebra with coproduct A = V*

(assuming the usual identification given by the Kiinneth formula).

Comparing (1.1) and (1.3), evidently homotopy-associativity of V

implies associativity of A. It is known that 6=p*; hence, comparing

(1.2) and (1.4), we see that homotopy-commutativity of V implies

anticommutativity of A.

Let (77, A) be a Hopf algebra over K. An element y EH is primitive

if A"(y)=0. Let irEH be the subalgebra generated by the primi-

tive elements. It is easy to see that w is a Hopf subalgebra. If

ir —H then we call H a primitive Hopf algebra. The following theorem

was proved by the author [3, Theorem 2.10], and independently by

J. C. Moore [5].

(1.5) If H is a Hopf algebra over a field of characteristic zero and the

coproduct is associative and anticommutative then H is primitive.

A simple algebraic example shows that (1.5) is not true in general

if the field has prime characteristic. The following theorem is due to

H. Samelson [6] and J. Leray [4]:

(1.6) Let H be a Hopf algebra over a field and let the coproduct be

associative. If H is an exterior algebra generated by odd degree elements

then it is primitive.

The purpose of this paper is to establish primitivity of H*(T, Zp)

for some 77-spaces T, where Zp is the ring integers modulo a prime p.

We shall make use of properties of the Steenrod cohomology opera-

tions [7] which we denote by

i        (Sq      (squares), if p = 2,

{Pp     (reduced powers), if p > 2.

Let T be an 77-space and suppose H*(T, Zp) is a polynomial ring

ZP{X] where XEH*(T, Zp) and consists of even degree elements if

p5¿2. The operations Stp are said to split on X if for all i^O and

xEX, Stp(x) is in the subalgebra generated by x.

Theorem 1. Let T be an arcwise connected H-space with homotopy-

associative and homotopy-commutative multiplication. If 77*(7, Zp)

= ZP{X] and the Steenrod cohomology operations split on X then

77*(T, Zp) is primitive.

We remark that it then follows on using a Kiinneth formula that

77*(T, K) is primitive if K is a field of characteristic p.

As an application of Theorem 1 we shall prove the following theo-

rem. For a fixed prime p, a topological space E is p-elementary if
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H*(E, ZP)=ZP or H*(E, Zp) =Zp{x]. As examples we cite: The real

projective plane (p9i2), the loop spaces £2(S2n+1) and complex projec-

tive space of infinite dimensions. On the other hand the loop spaces

£2(S2") are not ¿»-elementary for any p.

Theorem 2. Let p be a fixed prime and E — EiX • • • XEn, where

the Ei are p-elementary spaces. Let T be an arcwise connected H-space

with homotopy-associative and homotopy-commutative multiplication.

If there is a map f: T—>E or f: E—>T which induces an isomorphism of

the cohomology algebras with coefficients in Zp, then 77*(T, Zp) is

primitive.

Proof. Using the Kiinneth formula and /* we may represent

" (■* 1 Zp) = Zp\Xi, x2, • • • , x„\

where x, generates H*(Eit Zp) (we may ignore the trivial factors).

In view of the Cartan tensor product formula (see [2, Exposé 16,

bis l]) the Stp split on H*(EiX • ■ ■ XEn, Zp) and hence on

\Xi, x2, ■ ■ ■ , x„} since they commute with /*. Thus the theorem

follows from Theorem 1.

Corollary. A necessary condition that an arcwise connected H-space

T with homotopy-associative and homotopy-commutative multiplication

be homotopically equivalent to a cartesian product of p-elementary spaces

Ei, E2, ■ ■ ■ , En is that 77*(T, Zp) be primitive.

Remark. Even if the Ei are all 77-spaces, the map/is not required

to commute with the multiplication in T and the induced multipli-

cation in EiXE2X ■ ■ • XEn.

2. The main lemma. Let H=K{X] be a Hopf algebra over a field

K of prime characteristic p. We note:

(2.1) If p7¿2 each xEX has even degree.

(2.2) We may assume that each xEXC\-k is primitive.

The first is a well-known consequence of the theorem of A. Borel

(see [l, Théorème 6.1 ]). The second follows from Theorem 2.7 in

[3].
We shall assume throughout that X is well-ordered in such a way

that if x has lower degree than y then x<y. By a normal monomial

we shall mean a product of the form M = x™lx2n* • • • x?\ where the

XiEX and x,<x1+i. We call m¡+ ■ • • +mt the length of M and the

number of positive exponents its width. If R and S are normal

monomials their juxtaposition RS (corresponding to their product as

elements of 77) is equal to a unique normal monomial which we denote

by v(RS). If
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R = Xi x2 • ■ • xt ,        o = Xi x2  ■ ■ ■ xt,        ri + Si = nii,

we define
t

[R, S] = JJ (ri, s¡),       «il/fiîiil = (r<, í¿)-
¿-i

By induction on width one proves readily

(2.3) If M is a normal monomial whose factors are primitive then

A(M) =     E    {R, S]R ® S,
v(RS)-*M

where the summation extends over distinct pairs of normal monomials

R, S.
Let zEX be such that A"(z) £7r®7r. Then we may write (uniquely)

(2.4) A"(z) = E a(M, N)M ® N, a(M, N) E K,

where the summation extends over finitely many distinct pairs of

normal monomials M, N in primitive elements of X and the degree of

MN is equal to the degree of z. The proof of Theorem 1 will depend

on the

Main Lemma. Let H be a Hopf algebra with an associative and anti-

commutative coproduct A over a field K with prime characteristic p. Let

H = K{X], where XEH, and let z£X be such that A"(z)£7r®7T. Then

there is an element vEH with the same degree as z such that z — vEtt

and

(2.5) A"(v) = E E a(xm> xn)xm ® x", a(xm, xn) E K

where the outer summation is over (primitive) xEX and the inner sum-

mation is over (positive) m and n with m+n a power of p.

We shall first prove some subsidiary lemmas. It will be convenient

to extend the definition of a(M, N) in (2.4) as follows: If Q, R, S, T.

are normal monomials in primitive elements of X then

a(QR,ST) = a(v(QR),v(ST)).

Lemma 2.1. If R, S, T are normal monomials with R^l and T^l

then

a(RS, T){R, S] = a(R, ST){S, T].

Proof. Since the coproduct is associative we may equate the coeffi-

cients of R®S®T in (A®7)A(z) and (7®A)A(z). Since R^\ and

2V1, it is readily seen (A®7)A'(z) and (7®A)A'(z) contribute noth-

ing to these coefficients. We have
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(2.6) (A ® 7)A"(z) = E a(M, N)A(M) ® N,

(2.6)' (7 ® A)A"(z) = E a(M, N)M ® A(N).

Now using (2.3) it follows that the coefficients of R®S®T in (2.6)

and (2.6)', respectively, are

a(v(RS), T){R,S] = a(RS, T)[R, S],

a(R, v(ST))[S, T] = a(R, ST){S, T],

and the lemma is proved.

Lemma 2.2. Ifv(MN) is of the form wkQ, where &S: 1 is the multiplic-

ity of w and Q^l is normal then

a(M, N) = {M, N]a(wk, Q).

Proof. It suffices to consider il7and /Vas normal monomials of the

form xmR and ynS respectively, where m and ra are the corresponding

(positive) multiplicities of x and y and R and S are normal. Note that

if R = 1 and 5=1 the lemma follows at once from anticommutativity

of A. Assume that not both R = 1 and 5=1; we consider 3 cases:

(i) x<y. If R = \ the lemma is trivial. If R^i then

a(xmR, N) = {R, N]a(xm, RN) = {R, N]a(xm, Q) = {M, N]a(xm, Q).

(ii) x = y. If R = l then

a(xm, xnS) = {xm, xn]a(xm+n, Q) = {xm, N]a(xm+n, Q).

If R^\ then

a(xmR, xnS) = {R, N]a(xm, RxnS)

= {R, N]a(xm, x"RS)

= {R, N][xm, xn]a(xm+n, RS)

= {R, N]{xm, xn]a(xm+n, Q)

= {xmR, N]a(xm+n, Q).

(iii) x>y. Using case (i) we may write

a(N, M) = {N, M]a(yk, Q).

Note that a(vl7, TV) =a(N, M) by anticommutativity of A.

Lemma 2.3. If xEX, m+n = r+s, and

(2.7) (s - ra, ra) ^ 0        (mod p) s ^ ra,

then
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(r, s)a(xm, x") = (m, n)a(xr, x").

Proof. By Lemma 2.1,

(r, m — r)a(xm, x") = (s — ra, n)a(xr, x').

If we multiply by (m, ra) and use the identity

(m, n)(r, m — r) = (r, s)(s — ra, ra),

we get

(r, s)(s — ra, n)a(xm, yn) = (m, n)(s — ra, n)a(xr, xs).

In view of (2.7) we may divide out (s — ra, ra).

Lemma 2.4. If xEX and m+n = qpl, where q> 1 arad g^O (mod p)

then

(2.8) a(xm, xn) — 0 if pl does not divide m and ra,

(2.9) a(xrpi, xspi) = (r, s)a(x<-<¡-l)pi, xpi)/q        if s ¿á 0 (mod p).

Proof of (2.8). Suppose n<(q — l)pi. Since ra is not divisible by p\

((q - l)p* - ra, ra) pé 0 (mod p);

hence by Lemma 2.3,

qa(xm, xn) = (m, n)a(xpi, x<-"~1)pi).

Since m and ra are not divisible by p\ (m, ra)=0 (mod p) and (2.8)

follows. If n>(q—\)pi then m<(q—l)pi and hence a(x", xm) =0. By

anticommutativity of A, (2.8) follows.

Proof of (2.9). Note that

(sp* - p\ p{) = ((s - \)p\ p') ss (í - 1, 1) = s fé 0,       (mod ¿>).

Therefore (2.9) is obtained on applying Lemma 2.3.

Proof of the Main Lemma. Let F be a normal monomial com-

posed of primitive factors and of the same degree as z. We consider

two types of V:

(i) V has width greater than 1. Then we may write V = xrS, where

x is the first factor of V and its multiplicity is r^l, and 5^1. Put

a(V) =a(xr, S). Then using (2.3) and Lemma 2.2, we may write

A"(a(V)V) = E a(V){M,N]M ® N
V=v{MN)\M^l,Nyil

E a(M, N)M ® N.
V=v(.MN);M^l,Nyil

It follows that if M?*l, AV1, and v(MN) = V then 17®N has zero

coefficient in A"(z — a(V)V).
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(ii)   V = xqpi, where q>i and g^O (mod p). Put

a(V) = a(x{-"-1)pi, xpi)/q.

Using (2.3) we may write

A"(a(V)V) =       E      a(V)(r,s)xrpi ® x'pi.
r,s>0;r-}-s=3

Applying (2.9) to the terms for which s^Owe may write

A"(a(V)V) = E a(xrpi, x>pi)xrpi ® xspi

(2.10) '*'
+ E a(V)(r, s)xrpi ® xsp'.

We assert that if m+n = qp* then xm®xn has zero coefficient in

A"(z — a(V) V). In view of (2.8) only terms with m and w both divisible

by p{ can occur. In view of (2.10) only terms with

m = rpi,      ra = spi,      r + s = q,      r > 0,      s > 0,      s = 0 (mod p)

can occur. But s = 0 and q^O imply r¿¿0. Thus, since A is anticom-

mutative,

a(xrpi, xspi) = a(xsp<, xrpi) = 0,

and the assertion is proved.

Now define

v = z - E a(V)V

where the summation extends over all V of types (i) and (ii). Then v

evidently has the properties asserted in the main lemma.

3. Proof of Theorem 1. Let77*(7\ ZP)=ZP{X\; assume that the

elements of X(~\k are primitive (see (2.2)). If H*(T, Zp) is not primi-

tive then there is an element zEX which is not in -w. Moreover, if we

take z of lowest degree then A"(z)Eir®Tr and we may write (2.4).

Since A = V* is associative and anticommutative, there is an element

vEH with the properties specified by the main lemma. We shall show

that v is primitive; this will produce a contradiction for it implies that

zEir.

We shall make use of the following properties of StlP:

(3.1) Stp: Hq(T, Zp) -» H9+Hp~'\t, Zp)

where r = i if p = 2 and r = 2i if pj¿2.

(3.2) StpA = ASt
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where

(3.3) Slp(u ®w)=E St'p(u) ® Stp(w).
i-i+k

(3.4) Stp(u)

u, if i = 0,

u , if r = de

0,     if   r > degree of u,

u ,    if    r = degree of u,

where r is as defined above.

From (3.3) and (3.4) it follows that Stp commutes with A' and hence

also with A" in view of (3.2). Thus

(3.5) StpA"(v) = StPA"(v - z) + A"StP(z).

Now consider the expression (2.5) for A"(v). Let a(xm, xn)xm®xn

be a summand such that md is maximum, where d is the degree of x.

Put

a = a(xm, xn),        m + ra = pk.

In (3.5) take i = mj, where 7=d if p = 2, and 2j = d if p?±2. We shall

prove:

A. St^(z)=0.
B. The coefficient of xm"®xn in StfA"(v) is a(xm, x").

C. The coefficient of xmp®xn in St™jA"(v — z) is zero.

In view of (3.5) it follows from A, B, C that a(xm, x") =0, and hence

v is primitive.

Proof of A. The degrees of z and St^(z) are dpk and d(pk+m(p-1)),

respectively. The latter is not a multiple of the former since pk>m,

p — l. Thus A follows from the fact that St^(z) is in the subalgebra

generated by z.

Proof of B. We have

(3.6) Stp (ax   ® x ) = ax    ® x  + ¿_, Ui ® w,-

where the degrees of the w¿ are less than mdp. It remains to show that

no other summand byr®y' in A"(v) can contribute to the coefficient

of xmp®xn. If the degree of yr is less than md this is clear; if the

degree of yr is md then, writing a similar expression to (3.6) for

SÇs(byr®y*), we see that only byrp®y" has the same bidegree as

xmp®x". But if yT®ys7±xm®xn then y^x or r^m, and hence

StPs(yr®ys) contributes nothing to the coefficient of xmp®xn.

Proof of C. Combining (2.4) and (2.5) we may write
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(3.7) A"(v - z) = - E a(M, N)M ® N;

note that M®N has the property that MNp^ypi for y EX. Consider

such a term M®N. Let (di, d2) be its bidegree, and cm.n the coefficient

of xmp®xn in S(^(M®N). If di<md then it is clear that cm.n = 0.

If di=md then the only term in StP1(M®N) with the same bidegree as

xmp®xn is Mp®N. In view of the restriction on MN, MP®N

9ixmp®xn, and hence cm,n = 0. Finally, we complete the proof of C

and hence of Theorem 1 by showing that if di>md then a(il7, TV) =0.

Let M®N be such that di is maximum. In (3.5) take i = di if

p = 2, and i = di/2 if py^2 (the latter is possible since if p7i2, M has

even degree by (2.1)). We assert:

A'. 54(z)=0.
B'. The coefficient of MP®N in StlA"(v-z) is -a(M, N).

C. The coefficient of MP®N in StlA"(v) is zero.

In view of (3.5), A', B', C imply a(M, A)=0. The proof of C

follows immediately from md<di. For if (e\, e2) is the bidegree of a

term in StpA"(v) then ex is at most md+d\(p — 1) <pdi. The proof of

B' is very similar to the proof of B and we omit the details. To

prove A' it suffices to show that the degree of Stp(z) which is dpk

+di(p — l) is not a multiple of dpk (the degree of z) or, equivalently,

that di(p— 1) is not a multiple of dpk.

Consider a(xm, x") again and put m=qp', where qf^O (mod p). By

Lemma 2.1, we have

qa(xm, xn) = (pk — pi — ra, n)a(xpi, xpk~pi).

Thus if a(xm, x")t¿0 then a(xpi, xp*_p,')^0- By anticommutativity of

A, then a(xpk~pi, xp<)^0. Since the term xm®xB was chosen so that

md was maximum, it follows that

md è (pk - pl)d ^ (pk - pk~l)d.

Combining this with the inequalities

dpk > di > md

and multiplying through by (p — \)/dpk gives

di(p - 1)      / 1 \
if-,)>^>{i-7Yf-,)-

Thus di(p — \)/dpk is not an integer.
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SOME GLOBAL PROPERTIES OF HYPERSURFACES1

ROBERT E. STONG

1. Introduction. The translation theorem of Hopf [l] has been ex-

tended by Hsiung [2] and Voss [4] independently to hypersurfaces

and by Hsü [3] to other elementary transformations. The purpose

of this paper is to extend to hypersurfaces in (ra + l)-dimensional

Euclidean space some results obtained by Hsü [3] for the case ra = 2.

All hypersurfaces mentioned will be assumed to be twice differ-

entiably imbedded in an (ra + l)-dimensional Euclidean space

£n+1(ra + 13ï3). The notation used will be that of Hsiung [2]. In

particular, X, N, Mi, A denote the position vector, unit inner nor-

mal, first mean curvature, and area for the hypersurface Vn. Cor-

responding quantities for other hypersurfaces will be denoted by *, or

by primes.

Considerable use will be made of the vector product defined by

Hsiung [2]. Namely, if ii, ■ ■ • , in+i denotes a fixed frame of mutually

orthogonal unit vectors and A\, ■ ■ ■ , An are ra vectors whose com-

ponents in this frame are A" (i=l, ••-,«; a = l, • ■ • , ra + 1), the

vector product is defined by

il il      ■   ■   ■ in+l

A1 A2 An+1

Ai    Ai • ■ ■ Ai
AiX ■ ■ ■ X An= (-1)"

An      An  ■   •   •   An
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