
EXISTENCE OF INVARIANT BASES

ELLIS KOLCHIN AND SERGE LANG1

Let 7<" be a field, G a group of automorphisms of K, and M a vector

space over K on which G acts in such a way that a(aD) = aa-crD for

&EG, aEK, and DEM. The problem arises to find whether M has

a basis consisting of invariant elements under G. In other words,

letting K0 be the fixed field under G, and M0 the set of fixed elements

of M under G so that Mo is a vector space over Ko, to find out

whether M is isomorphic to the tensor product

M « K ®K, Mo

under the natural map. We shall see that this is so if and only if a

certain cocycle of G in the full linear group is trivial.

In some applications, a rational structure is added to K and G,

namely K is the function field of a principal homogeneous space

over a group variety G. We shall show that the cocycle involved is

then determined rationally. This leads us into a discussion of rational

cocycles in §3, and of their comparison with the ordinary cocycles of

Galois theory, i.e. where G is a finite Galois group. All cocycles in-

volved with coefficients in the full linear group split, and in fact the

Galois cohomology (in dimension 1) of the group variety of units in

an algebra is trivial (Propositions 2 and 5).

1. The invariant subspace. Let AT be a field, and G a group of

automorphisms of K. By a (G, K)-space M we shall mean a vector

space over K which is also a unitary G-module, such that

cr(aD) = o-a-aD

for aEK, DEM and a EG. An element D of Mis said to be invariant

under G if aD =D for all aEG. A basis (77) = (7>¿) of M over K will be

called invariant if (r7>¿=7)¿ for every aEG and every i.

Proposition 1. Let M be a finite dimensional (G, K)-space. If

(D) = (7>!, • • • , Dm) is any basis of M, and if

A (a) = (aa(o-)) (*,/= 1, • • • ,m)

is the matrix defined by

cDj = E a„i(<r)Dv (1 g j g m),
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then A (a) ■ a A (r) = A (or). A necessary and sufficient condition that M

have an invariant basis is that there exist an invertible matrix B with

coordinates in K such that A(a) =B~laB.

Proof. That A (a) satisfies the cocycle relation is easy to see. Sup-

pose A(a) = B~1<rB. Using matrix notation, we may write a(D)

= 'A(a)(D), where for any matrix X, we denote by 'X the transpose

of X. Let a new basis (77') be defined by (77') = 'B-l(D). Then

a(D') = o-'B-^D) = ta(B)~1-lA(<r)-(D) = 'B-^(D) = (D')

and thus (77') is invariant. Conversely, if (Dr) is an invariant basis,

define the matrix B by the relation (D) = 'B(D'). Then

lA(o-)(D) = a(D) = 'o-B-o-(D') = 'o-B-(D') = 'aB-'B-^D)

and A(<r)=B~1aB. This proves our proposition.

If we denote by M0 the set of G-invariant elements of M and by

Ko the fixed field of K under G, then M0 is a vector space over K0.

If M admits an invariant basis, then one sees immediately that M is

isomorphic to the tensor product

K ®k0 Mo" M

under the natural map a®D^>aD, aEK, DEM0.

We observe that the set of 7C0-linear transformations of K, denoted

by Endic0(K), forms a (G, 7f)-space in a natural fashion: If

T'GEndir^Ä'), and aEG, then one defines

(o-D)(a) = «(D^a)),

and verifies trivially that <r(aD) =aa-o-D.

In the applications, one frequently takes the subspace of Endjr0(7£)

consisting of the derivations of K over KB, or a finite dimensional

space of linear transformations over a subfield of K.

Remark. Proposition 1 and its proof generalizes so that K can be

a ring (with unity, not necessarily commutative) and M can be a

unitary 7£-module with finite basis. In this situation, a matrix B

over K with m rows and ra columns is invertible if there exists a matrix

Cover K with ra rows and m columns such that BC is the unity matrix

of degree m and CB is the unity matrix of degree ra. C is then unique

and is denoted by B~1. The generalized proposition states that if (D)

is a basis of ra? elements, and A(<r) is defined as above, then ¿l(<r) -ct^4(t)

= A(gt), and a necessary and sufficient condition that there exist an

invariant basis of ra elements is that there exist an invertible matrix

B over K with ra rows and m columns such that ^4(<r) =B~loB.
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2. Galois cohomology in dimension 1. As we have seen in the last

section, it is useful to have a criterion to split a 1-cocycle. We shall

give one in this section.

Let G be a group variety (i.e. a connected algebraic group) defined

over a field k. Let A be a finite Galois extension of k with Galois

group g. Then g operates as a group of automorphisms of the sub-

group of G consisting of the points of G which are rational over K.

We denote this subgroup by Gr. Suppose we are given a family

(xa)a€B of points of Gr satisfying

aV-o-Xr = x„T, <r, t E g-

Such a family is called a cocycle of g in Gr. The set of these cocycles

is denoted by Zx(g, Gr). We say that (x„) is cohomologous to (y„) and

write (x,)~(y,) if there exists an element zEGr such that

y a = z~1xcaz

for each <r£g. This is obviously an equivalence relation between co-

cycles. The set of equivalence classes is called the first cohomology set

of g in Gr and is denoted by H^g, GK). If zEGr then (z^crz) is a

cocycle, and such a cocycle is called a coboundary of g in Gr. The

set of all such coboundaries is denoted by ^(g, Gr) and is itself an

equivalence class, i.e. an element of 77:(g, Gr). (Of course, if G is com-

mutative, these sets are groups, and H1^, Gr) is a commutative

group.)

If LZ)K is another Galois extension of k, then there is a natural

map of Hl($R/k, Gr) into Hl(§Lik, Gl) obtained by inflation: A cocycle

for gx/fc determines one for $L/k simply by extending the function to

cosets of the subgroup of QL/k of which Qr/Ic is a factor group. It is

trivially seen that this natural map is actually injective and we may

take the injective limit of these cohomology sets as 7 becomes larger

and larger. The limiting set, union of all Hl(§L/k, Gl), will be denoted

by Hl(k, G).

We are interested in a noncommutative group, namely the full

linear group. More generally, let A o be a finite dimensional associa-

tive algebra with unity element over the field k, let ß be a universal

domain containing k, and let A be the algebra over £2 which is the

tensor product of A0 with ß. Let e\, ■ ■ ■ , em be a linear basis of A0

over k, and therefore of A over fi. Expressing elements of A in terms

of this basis, x = E%>ei> one sees tnat there exists a polynomial

P(XX, ■ ■ ■ , Xm)Ek{Xi, ■ ■ ■ , Xm] such that x is invertible if and

only if P(£i, ■ • • , £„0^0, or as we shall abbreviate, P(x)¿¿0. These

invertible elements therefore form a group variety defined over k (it

is a ¿-open subset of affine »i-space in the Zariski topology), and we
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shall denote it by T(A) or simply T. The general linear group GL(m)

is an example of such a group variety defined over the prime field.

Proposition 2. Let Y =T(A) be as above the group variety of units in

an algebra defined over k, and let K be a Galois extension of k of finite

degree, with Galois group g. Then H1^, Tr) is trivial, that is, every

cocycle is a coboundary.

Proof. The case in which k is finite is a special case of the fact that

TFig, Gr) is trivial for any group variety defined over a finite field k

(see [2]). In the infinite case, the theorem is proved in [l]. We re-

produce the proof here for the convenience of the reader. Let (xT) be

in Zl(o,, Tr). If (tT)ret1S a family of elements of ß, algebraically inde-

pendent over K, then P(^r/rxT) 5^0 because this polynomial does

not vanish when one tT is replaced by 1 and all the others by 0. It is

well known (see, for instance, Bourbaki, Algèbre, Chapter V, §10,

Theorem 4, p. 57) that this implies the existence of an element aEK

such that P(E(T<x)xr)^e0. Writing y= E(Ta)xr we see that yEYR

and ay= E(ffTa)°'xr~ 22(<rra)x~1xir=xJ1y> so that (x„) = (y<ry~l) is

in Bl(§, Tr). This concludes the proof.

3. Rational cohomology. We recall the notion of a homogeneous

space and use the terminology of Weil [4]. Let F be a variety and G

a group variety. Suppose we are given a rational map

f: VXG-^V

which is everywhere defined. Given vE V and xEG, we write vx in-

stead of f(v, x). We say that F is a transformation space for G if

v(xy) = (vx)y        and        ve = v

for x, yEG and vE V. Here, as usual, e denotes the unity element of

G. We say that the transformation space F is defined over k if G, V

and the rational map / are defined over k.

We observe that if ß is the universal domain, then G can be viewed

as a group of automorphisms of the function field ß(F). Indeed, for

each xEG, we have the automorphism <rx such that

MW =f(vx)

whenever/ is a function in ß(F), and v is a generic point of F over

a field of definition for / over which x is rational. In the same man-

ner, if the transformation space F is defined over k, then Gk is a group

of automorphisms of k(V).

A transformation space is said to be a homogeneous space if given

two points v, wE V, there exists xEG such that vx = w. We say that
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F is a principal homogeneous space if the element x is uniquely and

rationally determined. By this we mean that there exists an every-

where defined rational map /x: FX F—>G such that x = p(v, w). One

may write symbolically x = v~xw. The principal space F is said to be

defined over k if, as a transformation space it is defined over k, and

the rational map n is defined over k.

Let now G, G' be group varieties, let F be a transformation space

of G, all these being defined over k. A rational map

f-.VXG-^G'

of VXG into G', defined over k, is said to be a l-cocycle if it satisfies

the relation

/(», x)f(vx, y) = f(v, xy)

whenever v, x, y are independent generic points of F, G, and G' over

k. It then follows thatf(v, x) is defined whenever x is any point and v is a

generic point of V over k(x), because we can write

f(v, x) = f(v, xy)f(vx, y)'1

with y generic over k(v, x). The 1-cocycles form a set denoted by

Z\(G, V, G'). We say that two cocycles are cohomologous and write

/~g, if there exists a rational map <p: F—>G' defined over k such that

f(v, x)=<t>(v)~1g(v, x)(j>(vx). This establishes an equivalence relation

among the cocycles, and the equivalence classes form the first co-

homology set Hl(G, V, G'). The cocycles in the identity class, i.e.

those of type </>(îî)_10(î;x) are called coboundaries, and form a set

B\(G, V,G>).
(If G' is commutative, and written additively, we can define co-

cycles in higher dimension, an r-cocycle being by definition a rational

map

f-.VXGX ■    ■ XG-+G'

defined over k satisfying the coboundary formula

0 = (Ôf)(v, Xi, ■ ■ • , xT+i) = f(vxh x2, • ■ ■ , xr+i)

+ E (-!)'/(», xi, ' ' • , xvxv+i, • • • , xr+i)

+ (-lY+V(v, Xi, • -.,*).

One then has an rth cohomology group for r^O.)

We return to the noncommutative case, and assume that F is a

principal homogeneous space for the group variety G, all defined

over k. Let fEZ{(G, V, G'). If w0E V has the property that/ is de-

fined at (u, u^wo) for u generic on F over k(w0) and if we define
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<f)(v) =f(v, v^Wo)'1, so that </> is a rational map of F into G' defined

over k(wo), then/(i>, x) =<p(v)~i<j>(vx). Thus/ is trivial as an element

of Zliwo)(G, V, G'). It follows that if the points of F which are rational

over k are dense in the Zariski topology, then every element of

Z\(G, V, G') is a coboundary. (This is the case for instance if k is

separably closed.)

Now we transform the above cocycles into a homogeneous form.

LetX: FX V—>VX G be the canonical map such that \(u,v) = (u, u~xv).

Then the inverse of X is a rational map sending (v, x) onto (v, vx).

Given a cocycle fEZ\(G, V, G'), there exists therefore a rational map

F: VX F—>G' which makes the following diagram commutative:

vxG --* a

>v
V X  V

and the mapping F satisfies the relation

F(u, v)F(v, w) = F(u, w)

whenever u, v, w are independent generic points of F over k. We may

of course start with an arbitrary variety F defined over k and a group

variety G' with such a mapping. We may thus define homogeneous

cocycles Z\(V, G'), and coboundaries B\(V, G'), these being rational

maps of type F(u, v) =<j>(u)~1<t>(v) where <j>: F—>G' is a rational map

defined over k. This allows us to define H\( V, G') for any variety F

defined over k.

Proposition 3. Let V be a principal homogeneous space for G, and

let G' be another group variety defined over k. Then there is a bijective

mapping between H\(G, V, G') and H\(V, G') given by

f(v, x) = F(v, vx).

The proof is trivial.

As Serre has pointed out to us, we can inject H\(V, G') into the

Galois cohomology set Hl(k, G') as defined in §2. The way this is

done is described in the following proposition.

Proposition 4. Let V be a principal homogeneous space for G, and

let G' be another group variety, defined over k. For each FEH\(V, G')

choose a representative cocycle F in Z\(V, G'), and choose a finite Galois

extension K of k with group denoted by g such that V has a point v0

rational over K for which F(u, Vo) is defined when u is generic over K.
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For each o-£g, let xc = F(u, fo)_1P(ra, <rvo), where u, Vo are chosen as

above. Then (x„)„e9 is a cocycle in Zx(g, G¡¿), the corresponding element

x of H1^, G') is independent of the choice of F, K, vB, u and the mapping

F—>x is an injection

nl(V,G')^H\k,G').

Proof. From the coboundary relation one verifies immediately that

for independent generic points u, v of F over K, we have

F(u, Vo)~lF(u, avo) = F(v, I>0)-1P(», o-vo),

so that each x„ is rational over K, and (xr) is a cocycle. The rest of

the proof is straightforward and is left to the reader.

In particular, we get

Corollary. Let V be a principal homogeneous space for G and let

G' be another group variety, defined over k. If Hl(k, G') is trivial, then

sois H\(V, G').

Examples of group varieties G' for which Hl(k, G') is trivial are:

The group variety of units in a finite dimensional algebra as we

showed in Proposition 2, and in particular the full linear groups

GL(m) ;
The additive and multiplicative groups of the universal domain,

this being Hubert's Theorem 90 in its multiplicative and additive

forms ;

The group varieties G'having a normal sequence G' = GoZ)GO ■ ■ •

Z)Gr = l defined over k, with each G¿_i/G,- either the additive or

multiplicative group as above.

One may ask how it is possible to characterize those elements of

Hx(k, G') which come from an element of H\(V, G'). It is known

[3, Proposition 4] that H¡(k, G') is in bijective correspondence with

the set of isomorphism classes of principal homogeneous spaces of

G' over k, and the reader may easily verify that the image of H\( V, G')

in Hl(k, G') corresponds to those principal homogeneous spaces of

G', defined over k, which have a rational point in a field k(v) where v

is a generic point of F over k. The reader will also note that a cocycle

F: VX V—>G' determines a principal homogeneous space of G'

through which it can be factored [4, Proposition 4] and that this

space corresponds precisely to the one determined by the cocycle de-

scribed in Proposition 4 (Serre).

4. Rational determination of the invariant subspace. Let F be a

principal homogeneous space for the group variety G. For each point
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x of G, there is a unique automorphism ax of the function field ß( F)

over the universal domain ß, such that, if/£ß(F) then o-x/is defined

at a point v of F whenever/ is defined at vx, and (o-xf)(v) =f(vx). The

mapping x—tax is a group isomorphism permitting us to identify G

with a group of automorphisms of fl( F) over ß. If k is a field of defini-

tion of F, and if we make the assumption that x is rational over k,

then <rx maps k(V) onto itself. Therefore without this assumption,

<tx maps k(V) into k(x)(V).

Let/: VXG—>W be a rational map of FXG into some variety IF,

and let x be a point of G. Assume that the following condition is satis-

fied. For some field of definition k for/ (i.e. for F, G, IF and the graph

of/), and for some generic point v of F over k(x),fis defined at (v, x).

Then there exists a unique rational map/x: F—* IF defined over k(x),

such that fx(v) =/(», x). When the above condition is satisfied, we

shall say that fx is meaningful. Of course, if x is generic on G over &,

then fx must be meaningful.

Let M be a vector space over ß( F), of finite dimension m, which is

a (G, ß(F))-space. If (D) = (£>,, • • • , Dm) is a basis of M, then for

each point x of G, every <rx7?j is a linear combination of the basis vec-

tors Di with coefficients in ß(F). We shall call the basis rational if

there exist rational functions fa on VXG such that, for some common

field of definition k of F and the fa, and for every generic point x of

G over k, we have

(1) o-xDi=Efa*Di, (lèjèm).
i

A simple computation shows that when this is the case then, for in-

dependent generic points x, y of G over k, we have

f(v, xy) = f(v, x)f(vx, y)

where we denote by/the matrix (/,-,-). In other words,/is a 1-cocycle

in Z\(G, V, GL(m)). It follows (§3) that/* (i.e. each/¿y*) is meaningful

for every point x of G, and also, that Equation (1) holds for every

point x of G since each point of G can be expressed as a product of

generic points (x = xyy~1). In particular, any common field of defini-

tion of F and the/,,- must enjoy the same properties that have been

attributed to k above. Such a common field of definition will be called

afield of rationality of the rational basis (7>). It is obvious that every

invariant basis of M is rational, and admits as field of rationality

any field of definition of the principal homogeneous space F.

It is almost immediate that if one basis of a (G, ß(F))-space is ra-

tional, then so are all its bases. By a rational (G, Q(V))-space we shall

mean a (G, ß(F))-space with rational bases. The nature of such
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spaces is completely described by the following theorem, the proof of

which follows that of Proposition 1, making use of the results of §2

and §3.

Theorem. Let M be a finite dimensional (G, Q,(V))-space. A neces-

sary and sufficient condition that M be rational is that M have an in-

variant basis. If (77) is any rational basis of M, and k is a field of ra-

tionality of (D), then there exists an invertible matrix over k(V) trans-

forming (77) into an invariant basis of M.

Proof. Since invariant bases are rational, the sufficiency is clear.

To prove the necessity and the final part of the theorem, let (D) be a

rational basis of M with field of definition k. Denoting the cor-

responding cocycle in Z\(G, V, GL(m)) by/= (fa), we conclude from

§§2, 3 that there exist rational functions <f>aEk(V) such that the

matrix </> = (</>,•,) is invertible and f(v, x) =<¡>(v)~l<j>(vx) for x£G and v

generic on F over k(x). Setting Eí=E4'íjDí (í^j^m), where

(\pa) = (0)_1, we conclude that (E) is an invariant basis of M.

In the applications of the above theorem, one is usually given a sub-

set Mk(V) of M which is a vector space over k(V) such that we have

an isomorphism

M « 0(F) ®k(y) Mkiy)

under the natural map f®D—>fD, and such that a basis of Mkly)

over k(V) is a rational basis of M, having k as field of rationality.

One may then say that M is rationally k(V)-extended. In that case

one may say that an element 77 of M is defined over a field k'Z)k if

D lies in k'(V)Mkcv). If Ml is the set of elements of M which are in-

variant and defined over k, then Ml is a vector space over k, and our

theorem shows that we have an isomorphism

k(V) ®k Ml « Mk(V)

again under the map f®D—>fD.
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