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It is well-known that if T is an everywhere defined bounded oper-

ator on a Banach space X to a Banach space Y and T* is its adjoint,

then the range R(T*) of T* is closed in X* if and only if the range

R(T) of T is closed in Y (cf. [2, pp. 487-489]). The object of this
note is to establish this result for closed but possibly unbounded

operators. This result, for the unbounded case, is of great utility in

the study of differential operators and has been considered by F. E.

Browder,2 I. C. Gohberg and M. G. Kreïn, and by G. C. Rota.

In the sequel, we shall have occasion to consider a set under several

different topologies. We shall use the following convention: ïî A is a

linear set and B is a set of linear functionals on A, then the set A

with the weak topology induced by the elements of B will be denoted

by (A, B). Thus, the assertion that a set C is closed (dense, etc.) in

(.4, B) shall mean that C is a subset of A which is closed (dense, etc.)

in this weak topology. If A is a Banach space, then the assertion that

a set C is closed (dense, etc.) in A shall refer to the norm topology

of A.
Henceforth, X and Y will be Banach spaces. If F is a closed oper-

ator with domain D(T) in X and range R(T) in Y, then it was noted

by Sz.-Nagy [5], that D(T) becomes a Banach space under the norm

|x|:r=|x|-|-|Fx| (which we shall call the F-norm) and F is a

bounded operator on this space. If in addition, D(T) is dense in X,

it is well known that T has a uniquely defined adjoint T* with do-

main D(T*) dense in (Y*, Y), and that T* is a closed operator.

Theorem l.3 Let T be a closed operator on X to Y with D(T) dense

in X. Then the range R(T*) is closed in X* if and only if the range

R(T) is closed in Y.

That R(T*) is closed in X* when R(T) is closed in Y is shown in
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1 This note was written under grant G-7011 of the National Science Foundation.

s It has been learned through personal communication that Browder has estab-

lished this and related results in a forthcoming paper [l]. However, as he deals with

more general spaces, his proof requires considerably more analysis.

3 Since submitting this paper, it was discovered that T. Kato has a proof of this

result in print {Perturbation theory for nullity, deficiency and other quantities of linear

operators, J. Analyse Math. vol. 6 (1958) p. 273). However, his method of proof is

completely different from that contained herein.
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[3, p. 98] to follow from the bounded case after introducing the T-

norm on D(T). Alternatively, a straight-forward modification of the

proof for the bounded case can be used. The converse is shown to be

true in [3, p. 99] but only under the restriction that X and Y be

reflexive. Rota [4] shows that the converse for general Banach

spaces follows easily from Theorem 2 below, but there is one assertion

in his proof of this latter result which does not hold in general. How-

ever, with the aid of the following lemmas, a modification of his argu-

ment can be used.

Lemma 1. Let T be a closed operator on X to Y with D(T) dense in X.

Then T* is continuous (and hence uniformly continuous) as an oper-

ator with domain (D(T*), Y) and range in (X*, D(T)).

Proof. A basic neighborhood of 0 in (X*, D(T)) is given by

N = {x* E X*:  | x*(xi) |   < e, i = 1, ••-,«} ,

where each x,- is in D(T). Consider the following neighborhood of 0

in (D(T*), Y):

M = {y*E D(T*): | y*(Tx,) \   < e, i = 1, • • • , ra}.

Clearly, T*(M) EN. (This is a reinterpretation of part (F) of Rota's

proof of Theorem 2 (cf. [4, p. 28]).)

Since T* is a closed operator, the set D(T*) is a Banach space un-

der the F*-norm. Let E be this Banach space and let Se be its unit

ball.

Lemma 2. Let T be a closed operator on X to Y with D(T) dense in X.

Then Se is a compact subset of (Y*, Y).

Proof. Let A be a directed set and let {y*:aEA\ ESe be a

Cauchy net in (Y*, Y). Let Sy be the unit ball of Y* in the usual

norm. Then, by the Banach-Alaoglu Theorem [2, p. 424], Sy is

compact in (Y*, Y). Since for every y* in D(T*), \y*\r*^ \y*\, we

have SeESt and hence there exists a y* in Sy such that yt-^J* m

(F*, F). By Lemma 1, { T*(y*a): aEA ) is a Cauchy net in (X*,D(T)).

By the boundedness of T* as an operator on E to X*, T*(Se) EnSx

for some integer w>0, where Sx is the unit ball of X* in the usual

norm. Now, the topology of (X*, D(T)) is weaker than the topology

of (X*, X), and hence nSx is compact in (X*, D(T)). Thus, there

exists an x* in nSx such that T*(y*)—»x* in (X*, D(T)), i.e., for all

x in D(T), F*y*(x)->x*(x). But for x in D(T), F*y*(x) =y*(Tx)

—>y*(Fx). Hence, for all x in D(T), y*(Tx) =x*(x). But then, by the

definition of T*, y* is in D(T*) and T*(y*) =x*. For all y in F we
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have |yo*(y)j = lim |y*(y)| ^ lim inf ¡y*|H, and so |yj|

sHim inf \y*\. Similarly, since |x*(x)| ^lim inf | F*y*| |x| for x in

D(T) and D(T) is dense in X, we have |x*| ^lim inf | F*y*|. Hence

| yo* | T" =  | yo* I   +  I Xo* |

^ lim inf [ | y* \  + | T*y* | ] = lim inf | y* \ y.
A A

Since each y* is in Se, we get | y* I J" = L i.e., y* is in Se. This proves

that Se is complete in (Y*, Y). But SeESy and Sy is compact in

(Y*, Y), hence SE is compact in (F*, Y).

Lemma 3. Suppose that T is a closed operator on X to Y with D(T)

dense in X and such that T* is one-to-one and R(T*) is closed. If B is a

closed convex subset of (Y*, Y), then T*(B) is closed in (X*, X).

Proof. To show that T*(B) is closed in (X*, X), it suffices, by the

Kreïn-Smul'yan Theorem [2, p. 429], to show that T*(B)H\mSx is

closed in (X*, X) for every ?ra>0, where Sx is the unit ball of X* in

the usual norm. Since the set mSx under the topologies induced from

either (X*, X) or (X*, D(T)), is a compact Hausdorff space, the two

topologies are equivalent on mSx- Thus, it suffices to show that

T*(B)f~\mSx is closed in (X*, D(T)). Since mSx is closed in

(X*, D(T)), the set T*-l(mSx) is closed in (7>(7*), Y) by Lemma 1.

But (D(T*), Y) is just the set D(T*) with the topology of (F*, F)

relativised to D(T*). Hence there exists a closed subset C of (Y*, Y)

such that T^^mSx) =D(T*)(~\C. Now, T* is continuous on E to X*

and by hypothesis, is one-to-one and has closed range. Thus, by the

Interior Mapping Principle [2, p. 55], there exists a k>0 such that

T*~1(mSx) EkSe, where kS& is compact in (Y*, Y) by Lemma 2.

Therefore, T*-l(mSx)=kSE(~s\C is compact in (D(T*), Y). Hence,

BC\T*~1(mSx) is compact in (D(T*), Y). By Lemma 1 it follows

that T*(B)r\mSx = T*(Br\T*~1(mSx)) is compact and hence closed

in (X*, D(T)). This establishes the lemma.

In [4, p. 28, (E)], Rota asserts that SE is compact in (E, E*). To

see that this need not be the case, let F be a bounded operator and

F a nonreflexive Banach space. Then the norms on E and X* are

equivalent and E*=X**. Thus, the compactness of Se in (E, E*)

would imply the reflexivity of F.

Theorem 2. Suppose that T is a closed operator on X to Y with

D(T) dense in X and such that T* is one-to-one and R(T*) is closed.

Then T maps D(T) onto all of Y.

Proof. We give a brief sketch of parts (D) and (H) of [4, p. 28].
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Take y0 in Y, yo^O, and let B= {y0} x, the annihilator in F* of y0.

Then B is a closed convex subset of ( F*, Y) and hence, by Lemma 3,

T*(B) is closed in (X*, X). By the totality of 7>(F*) over F, i.e.,

the density of D(T*) in (F*, Y), there exists a y* in D(T*) such that

y*(yo) =1. Since T* is one-to-one, F*(y*) does not belong to the set

T*(B). Hence [2, p. 422], there exists x0 in X such that (T*y*)(x0) = 1

and x*(x0) =0 for all x* in T*(B). It is then shown that x0 is in D(T)

and Fx0=yo, completing the proof of the present theorem.

Theorem 1 can be proved from Theorem 2 as in [4, p. 29]. We now

give an alternate proof. Let Fi be the closure of R(T) in F and let

Fi be the operator on X to Yi defined by Fi(x) = T(x) for x in D(T).

Also, let T* denote the mapping on Y*/Yf to X* which is induced

by T*. Now, since Y* = Y*/Yt, it follows that T* = f* and hence

R(T*) = R(f*) = R(T*) is closed in X*. Since T* is also one-to-one,

we infer from Theorem 2 that R(T) =R(Ti) is closed in Yi and hence

in Y, which establishes the theorem.
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