
ARITHMETICAL FUNCTIONS OF A GREATEST
COMMON DIVISOR. I

ECKFORD COHEN

1. Introduction. Let m and « denote positive integral variables.

Also place

(1.1) fain) =   E «(<*)*",
dS—n

where g(n) is a bounded arithmetical function and a a real number. In

this paper we investigate the average order of magnitude of functions

of the form fa((m, «)) where (m, n) denotes the greatest common

divisor of m and « and a = 1. The principal result is embodied in the

theorem of §3.

The method of the paper is elementary. It is based upon an identity

(Lemma 3.1) which enables us to reduce the problem in question to

the consideration of arithmetical functions in a single variable. The

only other tools required are some auxiliary identities and several

elementary estimates, all contained in §2.

Of particular interest are the functions (1.1) which arise when

g(n) = l and g(n)=p(n), where p(n) denotes the Möbius function.

In the first case,/„(«) becomes the generalized divisor function aa(n),

while in the second case /«(«) reduces to the generalized totient

pa(n) :

(1.2) o-a(n) = £«*,       pa(n) =  ¿Zß(d)&:
dS—n dS—n

Following the usual practice, we write a(n) =ax(n), p(n) =pi(n). The

corollaries of §3 are devoted to estimates for the functions aa((m, «))

and pa((m, »)), a^l. We mention that the functions a((m, «)) and

cr2((m, «)) were considered originally by Cesàro [2].

2. Identities and estimates involving functions of a single variable.

In this paper x will be assumed real and ^2. The summatory func-

tion G(x) of an arithmetical function g(n) is defined by

G(x) = J2 gin).

In the first two lemmas of this section/(«) will be defined by
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ARITHMETICAL FUNCTIONS 165

(2.1) f(n) = 2Z g(d)h(5),
dS=n

where h(n) is an arithmetical function with summatory function H(x).

The following two results are known.

Lemma 2.1. If f(n) is defined by (2.1), then

(2.2) £/(») = £ g(n)HÍ-) = E Hn)G(-).
n&x n£x \ri / n%x \ W /

Proof. We have

E/M =IZ  g(d)k(6) = 2Zg(d)   E Kb),
n£x n£x dí=n d¿x Ö£x/d

which proves the equality of the first and second expressions in (2.2).

The equality of the first and third is proved similarly.

Lemma 2.2 (Compare [4, (4); 3, p. 317]). If f(n) is defined by (2.1),
then for all Si, S2 satisfying 0<oi^x, 0<82^x, S1Ô2 = x,

(2.3) £/(«) = E   g(»)BÍ-) + E *(»)g(-) - G(5i)H(52).
n^x «á5i \ ft / ns52 \ ft /

Proof. By (2.2) one may write

2Z/(n) = E s(n)HÍ-) +    E   s(n)HÍ-) = Z + Zl
nix ns«i \»/ Si<n¿x \»/ 1 2

moreover,

E -    E   f(»)   E  Ha) = E *(«)     E    S(n)

=  E¿(<W—) - G(5i)P(ô2),
oS{2 \a/

and (2.3) is proved.

The following classical elementary estimates, needed in the later

discussion, will be cited without proof.

(2.4) Y.-^ïW-Z-^ot-^) ifa>l;
n>x   ft ngj   ft \ X        /

^-.  log ft /log x\
(2-5) £_^_=o(-M;

_ tfa+1 iO(xa) if a > 0,
(2.6) E«a =-h <

a+1        lO(l) if-l<a<0;n^x
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(2-7) Z- = logx + 7 + o(-Y
n&x    « \ X /

where y is Euler's constant.

Define 1,(5, g) by the Dirichlet series,

t(     \      V g{n) <   ^ n£(*, g) = Z, - (* > 1),
n-i    ns

and let L'(s, g) denote the derivative of L(s, g).

Lemma 2.3. Let gin) be bounded. Then if a>0,

_ /L(a + 1, g)\
(2.8) £/„(») = ( ,   /     )*"" + 0(ea(x)),

nS* \      a + I       /

where ea(x) = x", x log x, or x according as a>l, ct=l, or a<l;

t-> fiin) /log x\
(2.9) YiJAA = U2,g)i\0gx + y) + L'i2,g) + 0l-^-),

n^x        ** \     *    /

(2.10) £—-0(«>.

Proof. In all cases

(2.11)    E^-E^Líí^-Z^E*-.

Case 1 (a>0, ¿ = 0). In this case (2.11) yields, in conjunction with

(2.6),

x«+i g(d) / 1\
¿2 fain) = —— 2J —— + o[x*22 —)
«SX a +  1  dSx    ¿a+1 \        dsx   da/

\    a + 1    / \       <¡>x  áa+7

and (2.8) follows by (2.4).

Case 2 (a = 1, ¿ = 2). In this case, (2.11) becomes, by virtue of (2.7),

E — - dogx + T) £ — - 22 —p— + o(- ¿2-\
n¿x       rl d^x       «• dzx » \ •*    cisi   » /

= (log x + y)¿(2, g) + L'(2, g)

\   '     ¿>x d2/ \d>x   d2 J \   x  /'
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and (2.9) results on the basis of (2.4) and (2.5).

Case 3 (a = t = l). In this case (2.10) follows immediately from

(2.11) since g(n) is bounded. The lemma is proved.

Recalling the familiar fact, t~x(s) — E«°=i ß(n)n~' (s>l), we note

that the case a — 1, g(n)=ri(n) in (2.8) yields the classical estimate

of Mertens for the average order of 4>(n),

(2.12) $(x) = E «K») = —-H 0(x log *).
Hi 2f(2)

We prove the following additional estimates for 4>(n).

Lemma 2.4. If t>0, then

f (/ - 1)

v-y
+ 0   — ifl>2,

n i«   V *(n) *  A r'(2)-L   \JLni/loga;\        ■,<     ,
(2-13) S^= fwVlogx"r(2T + V + 0W    *7^2'

. 0(x2-') ift<2.

Proof. The case t<2 follows by (2.6) in view of the fact, 4>(n) Sn.

The case t = 2 is the case g(n) =ß(n) in (2.9). In case t>2, we have,

on the basis of (2.11), with g(n) =n(n), a=l, in connection with (2.4),

^ <t>(n) ^  ß(d) (        „   1 \
E ^V = fO- D E ^r + oí*»-' E -)

f (t - l)        / „ l \                t(t - l)
=- +0[ E — ) + 0(x2-') = -- + 0(x2-').

f(0        V £, ¿7 r (o
The lemma is proved.

3. The average order of fa((m, »)). Leti>(x) denote the summatory

function of <f>(n). The following lemma is basic in the proof of the

main result of this section.

Lemma 3.1. If f(n) is an arbitrary arithmetical function, then

(3.1) E /((«> *)) = 2 E/(»)*(-) - E/W.
a,bzx n%x \n / ngz

Proof. Let Q(x) denote the number of ordered pairs of positive

integers a, b^x such that (a, b) = 1. Then clearly

E/((M)) = £Q (-)/(»)■
a.báx n¿i        \ ft /
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But it is easily observed [l, p. 430; 5] that Q(x) =2i>(x) — 1. Hence

(3.1) follows immediately.

We are now ready to prove our

Theorem. Let g(n) be bounded. Then in case a>l,

Z faiia, b))

(3.2) '*"
Lia + 1, g)

- i     ■   ,w ^ (2f(a) - ^a + 1))X"+1 + °iE«(X»>
(a + l)f (a + 1)

wAere

x" (a > 2),

(3.3) £„(*) = ■ x2 log x (a = 2),

.x2 (1 < a < 2);

i« case a = 1,

£ Mia, b))
a,b£x

x    ( ( 1       f(2)      f(2)\ )
(3.4) -—{«2, „(!.,,+„-_-_—_) + r(2.«,}

+ 0(x3'2log x).

Proof. Let .Fa(x) denote the summatory function of/„(«). For all

a^l, it follows by Lemma 3.1 that

(3-5)       Z Mia, b)) = 2 E/«(»)«(—) - Fa(x) - 2 ¿ - ¿.
a,6gx nsx \ « / 12

We now separate the proof into two parts according as a>l or

a = l.

Case 1 (a>l). By Lemmas 2.1, 2.3, and 2.4, we have

¿ - E/.(»)*(-) = E mFa(-)
1 njx \ « / nSx \ « /

_/£(«+l,g)*»H\        »(„)   |  0/,E^A

V « +   1 /nsx    «a+1 \        nsx      «<*   /

/£(a + 1, f)r(a)\
= (—-Lííi^ W<h-i _|_ 0(ít.2) + 0(£a(x)).

V(a+l)f(a+l)/

Hence
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«        (L(a + 1, g)Ha)\
(3.6) E = (A '"I*"" + 0(Ea(x)), a > 1.

i \(a + l)t(a + 1)/

By (2.8), we also have

«        (L(a + 1, g)\
(3.7) E = ( 'Sy)x°+' + 0(x°), «>1.

2 \     a + 1     /

Thus (3.2) results on combining (3.5), (3.6), and (3.7). This completes

the proof of Case 1.

Case 2  (a=l). In this case, applying Lemmas 2.1 and 2.2 to

Ei with z = ôi = 52 = x1/2, g(n) =4>(n), h(n)=/i(n)> one obtains

Z=2Z 4>(n)Fi(-\ + E/i(»)*f-) - H*)Fi(z)
i       n<,z \n J      nSz \n/

(3-8)      -Z+Z-2Z.
11 12 13

On the basis of (2.8) we have (x^4)

n       \       2       / nsi    n2 \   nt,    n n)

By (2.13), or (2.10) with fx(n) =4>(n), it follows that the O-term of

En is

Of x log x  E -±-L) - 0(xi'2 log x);
\ nSx1/s    n   /

hence application of Lemma 2.4 to the first sum in En gives

rt<n        V       L(2, g)x2 (logx     f'(2)        \
(3-9)  Ç=^(^r^"7(2y+7 + 0(" logx)-

By (2.12), one obtains

^ x2    ^/i(»)   ,   n(   r/i(»),      x\
E = —777 E —+ OUL — log—).
i2        2f(2) „SJ    «2 \   nSz   n »/

Using (2.10), it is observed, as in the case of En> that the O-term of

Ei2 is 0(x3/2 log x). Hence by (2.9),

(3.10)   E = ^{¿(2,£)(^p + 7) + P(2,g)} +O(x"2logx).

By (2.8) and (2.12), we have
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Ç = (^+0("08i,)(^ri+0(I,ogï))'

from which it follows that

._.       Li/2, g)x2
(3.11) ¿Z=     \Z     +0(x°'2logx).

is 4f(2)

Finally, by (2.8), one obtains

4,      L(2, g)x2
(3.12) J2= +0(x\ogx).

Combining (3.5), (3.8), (3.9), (3.10), (3.11), and (3.12), the relation
(3.4) results. This completes Case 2, and the theorem is proved.

Remark. We point out the close analogy between (3.2) and the

corresponding result (2.8) for functions of one variable.

The following corollary for aa((m, «)) arises on placing g(n) = 1 in

the theorem.

Corollary 3.1. If a>l, then

(3.13) ¿Z ».((«. b)) = —— (2f(a) - f(« + 1)) + 0(Ea(x)),
a.bsx a+ 1

where Ea(x) is defined as in (3.3);

^ / 1        f(2)\
(3.14) J2  o-((a,b)) = x21 log x+2y-—J + 0(x*'2 log x).

The case g(n) =p(n) leads to the following result for pa((m, «)).

Corollary 3.2. If a>l, then

2~2  <t>a((a, b))
a,b£x

(3 15) xa+1

(a + l)r(a + 1)

where Ea(x) is defined by (3.3) ;

£ *((«, &))
a,6sx

x2   / 1       f(2)      2f'(2)\
(3.16) = —-(log x 4- 2T-— ) + 0(x3'2 log x).

f2(2) \ 2 2 t(2) )
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ISOTOPY IN 3-MANIFOLDS. III. CONNECTIVITY OF
SPACES OF HOMEOMORPHISMS

D. E. SANDERSON

1. Introduction. J. H. Roberts has reported a proof that the space

H(P) of homeomorphisms of the plane onto itself has exactly two

components [7]. The corresponding result for three-space is proved

in this paper (Roberts stated in an indirect communication to the

author that he has carried out investigations along this line but does

not intend to publish them). M. K. Fort proved that H(P) is locally

arcwise connected [4] and Fort and E. E. Floyd published a paper in

which they proved that the space of homeomorphisms of the 2-sphere

onto itself is uniformly locally connected [3]. Both of these results

are likewise extended in this paper to the three-dimensional ana-

logues.

2. Definitions. All of the above-mentioned results are for the

compact-open topology introduced by R. H. Fox [5]. If d(x, y) de-

notes the usual metric for Euclidean 3-space, P3, and Cr is the cube

in P3 with center at the origin and side r (faces parallel to a fixed set

of coordinate planes), then an admissible metric for the space, H(E),

of homeomorphisms of E3 onto itself under the compact-open topol-

ogy is p(f, g)=infr>0max[l/V, supxecrd(f(x), g(x))]. Similarly, an

admissible metric for the space, H(S), of homeomorphisms of the 3-

sphere, Ss, onto itself is p(f, g) =supieS3 d(f(x), g(x)). Since the treat-
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