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A COUNTABLE INTERPOLATION PROBLEM

Z. A. MELZAK

1. Let 3C be the set of all order-preserving homeomorphisms of

7= [0, l] onto itself. 3C is a metric space in the uniform metric p:

(1) p(/i, fi) = max | fi(x) - fi(x) | , fi, fi G 3C.
i

Franklin [l] has proved the following theorem: (A) Let A and B

be two countable sets, each dense on 7. Then the set of analytic

/£3C, such that f(A) =B, is dense in 3C.

It follows from (A) and from its extension in [2] that there exist

nontrivial analytic functions /£3C, such that/(x) is transcendental

for each transcendental x£7, and for each algebraic x£|7, x and/(x)

are algebraic and of the same degree.

In this note, without using either of these results, we prove a

similar but complementary statement by means of Baire's Category

Theorem.

Theorem 1. Let 3Za, a>2, be the subset of 3C consisting of all func-

tions /G3C, whose values are either rational or transcendental and ap-

proximate to degree >a,for each algebraic x£7. Then Xa is a dense

Gi-set of second category in 3C.

2. Since 3C is not complete in p, we first remetrize it. Let

(2) *(flt fi) = P(fh fi) + p(fr1, fr1), fi, h e x.

Lemma I. 30. is complete in the a-metric.

Let 9r = 7/ be the set of all continuous maps from 7 into I, then ÍF

is complete in p. Let {/„}, J7 = 1, 2, • • • , be a o--Cauchy sequence in

3C. Then  {/„}   is also a p-Cauchy sequence in ff, therefore /»—>/,
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/£$. Similarly, {fi1} is also a p-Cauchy sequence in 5, therefore

f^-^h, hE'S. Finally, f[h(x)]=h[f(x)]=x, therefore /Gff and
h=f~1E'S. Hence/G3C and 3C is complete.

Henceforth we consider 3C in the c-metric only.

Lemma 2. Let G be an open interval on a line, with rational end-

points. Let A = \an], n = l, 2, • • -, be the sequence of all rational

members of G, and put an =pn/qn where pn and q„ are rational integers,

q„>0, and g.c.d. (p„, q„) = l. Let a>2 and e>0. Put

oo

A(e,a) = U (pn/qn — e/qn, pn/qn + t/q*), 0r|G,

(3)
00

A(e, a) = ( — e, e) W U (pn/qn — «/?», pn/qn + e/qn), 0 EG.
B-i

Let \em}, m = l, 2, • • • , be a sequence of positive numbers decreasing

steadily to 0. Let
00

(4) Aa = D A(em, a).
m=l

Then xEAa if and only if either (1) xEA or (2) xEG, x is a trans-

cendental number approximable to degree >a.

It is clear that A EAa. Let y£c7 be a real number approximable to

degree d>a. By the definition of this concept [3; 4] this means that

the equation

\y-p/q\   <l/qd

has infinitely many solutions in rational integers p, q, g.c.d. (p, q) = l.

This implies that yEA(em, a) for every m, and so yEAa. Since d>2,

y is transcendental by Roth's theorem [5].

Suppose now that yG^4a, y irrational. By the definition of Aa this

means that the inequality

p/q - e/q" < y < p/q + e/q«

is satisfied in rational integers p, q, g.c.d. (p, q) = l, for arbitrarily

small e. Since y is irrational there are infinitely many distinct such

solutions. This shows that y is approximable to degree >a and there-

fore transcendental.

3. We now prove Theorem 1.

Let R={rn], B=[bn], « = 1, 2, • • • , be the sets of all rational

and all algebraic numbers in (0, 1) respectively, taken in the above

enumerations. Sets R(em, a) are defined as in (3). Put
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(5) IL,,™ = {/1 / E se, f(bn) E R(€m, a) ].

Since R(em, a) is an open set dense on Z, it follows that 11«,m is, for

each m, m, an open set dense in 3C. By Baire's Theorem [ó] the set

QO

a llr^m

is therefore a dense Gs-set of second category in 3C.

Since /Git if and only if

00

f(bn) e n *(«»» «)> « = 1, 2, • • •
771=1

it follows from Lemma 2 that /Gil if and only if for each n f(bn) is

either rational or transcendental and approximable to degree >a.

Therefore cU. = 3£a and the theorem is proved.

Corollary.  Theorem 1 remains true if "approximable to degree

>a" is replaced by "a Liouville number."

A number x is a Liouville number [3; 4] if it is approximable to

any degree. To prove the corollary it suffices to take a sequence

{a™}, m = 1, 2, • • • , of real numbers increasing steadily to infinity

and with «i > 2. We then consider the set

•K-oo   =    fi   "^«m»
777=1

which is a dense G ¡-set of second category in 3C since each X.am is such

a set.
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