- 5. ——, Harmonic analysis of the classical domains in the study of analytic functions of several complex variables, mimeographed notes, about 1956.
- 6. J. Mitchell, The kernel function in the geometry of matrices, Duke Math. J. vol. 19 (1952) pp. 575-584.
- 7. K. Morita, On the kernel functions of symmetric domains, Science Reports of the Tokyo Kyoiku Daigaku, Section A vol. 5 (1956) pp. 190-212.
- 8. C. L. Siegel, Analytic functions of several complex variables, Notes by P. T. Bateman, Institute for Advanced Study, Princeton, 1948-1949.

THE PENNSYLVANIA STATE UNIVERSITY

A COUNTABLE INTERPOLATION PROBLEM

Z. A. MELZAK

1. Let \mathcal{K} be the set of all order-preserving homeomorphisms of I = [0, 1] onto itself. \mathcal{K} is a metric space in the uniform metric ρ :

(1)
$$\rho(f_1, f_2) = \max_{I} |f_1(x) - f_2(x)|, \qquad f_1, f_2 \in \mathfrak{R}.$$

Franklin [1] has proved the following theorem: (A) Let A and B be two countable sets, each dense on I. Then the set of analytic $f \in \mathcal{R}$, such that f(A) = B, is dense in \mathcal{R} .

It follows from (A) and from its extension in [2] that there exist nontrivial analytic functions $f \in \mathcal{K}$, such that f(x) is transcendental for each transcendental $x \in I$, and for each algebraic $x \in I$, x and f(x) are algebraic and of the same degree.

In this note, without using either of these results, we prove a similar but complementary statement by means of Baire's Category Theorem.

THEOREM 1. Let \mathcal{K}_{α} , $\alpha > 2$, be the subset of \mathcal{K} consisting of all functions $f \in \mathcal{K}$, whose values are either rational or transcendental and approximable to degree $> \alpha$, for each algebraic $x \in I$. Then \mathcal{K}_{α} is a dense G_{δ} -set of second category in \mathcal{K} .

2. Since \Re is not complete in ρ , we first remetrize it. Let

(2)
$$\sigma(f_1, f_2) = \rho(f_1, f_2) + \rho(f_1^{-1}, f_2^{-1}), \qquad f_1, f_2 \in \mathcal{K}.$$

LEMMA 1. 3C is complete in the σ-metric.

Let $\mathfrak{F}=I^I$ be the set of all continuous maps from I into I, then \mathfrak{F} is complete in ρ . Let $\{f_n\}$, $n=1, 2, \cdots$, be a σ -Cauchy sequence in \mathfrak{R} . Then $\{f_n\}$ is also a ρ -Cauchy sequence in \mathfrak{F} , therefore $f_n \rightarrow f$,

Received by the editors May 8, 1959 and, in revised form, May 25, 1959.

 $f \in \mathfrak{F}$. Similarly, $\{f_n^{-1}\}$ is also a ρ -Cauchy sequence in \mathfrak{F} , therefore $f_n^{-1} \to h$, $h \in \mathfrak{F}$. Finally, f[h(x)] = h[f(x)] = x, therefore $f \in \mathfrak{F}$ and $h = f^{-1} \in \mathfrak{F}$. Hence $f \in \mathfrak{F}$ and \mathfrak{F} is complete.

Henceforth we consider \mathcal{K} in the σ -metric only.

LEMMA 2. Let G be an open interval on a line, with rational endpoints. Let $A = \{a_n\}$, $n = 1, 2, \dots$, be the sequence of all rational members of G, and put $a_n = p_n/q_n$ where p_n and q_n are rational integers, $q_n > 0$, and g.c.d. $(p_n, q_n) = 1$. Let $\alpha > 2$ and $\epsilon > 0$. Put

$$A(\epsilon, \alpha) = \bigcup_{n=1}^{\infty} (p_n/q_n - \epsilon/q_n^{\alpha}, p_n/q_n + \epsilon/q_n^{\alpha}), \qquad 0 \in G,$$

$$A(\epsilon, \alpha) = (-\epsilon, \epsilon) \cup \bigcup_{n=1}^{\infty} (p_n/q_n - \epsilon/q_n^{\alpha}, p_n/q_n + \epsilon/q_n^{\alpha}), \qquad 0 \in G.$$

Let $\{\epsilon_m\}$, $m=1, 2, \cdots$, be a sequence of positive numbers decreasing steadily to 0. Let

(4)
$$A_{\alpha} = \bigcap_{m=1}^{\infty} A(\epsilon_m, \alpha).$$

Then $x \in A_{\alpha}$ if and only if either (1) $x \in A$ or (2) $x \in G$, x is a transcendental number approximable to degree $> \alpha$.

It is clear that $A \subset A_{\alpha}$. Let $y \in G$ be a real number approximable to degree $d > \alpha$. By the definition of this concept [3; 4] this means that the equation

$$|y - p/q| < 1/q^d$$

has infinitely many solutions in rational integers p, q, g.c.d. (p, q) = 1. This implies that $y \in A(\epsilon_m, \alpha)$ for every m, and so $y \in A_\alpha$. Since d > 2, y is transcendental by Roth's theorem [5].

Suppose now that $y \in A_{\alpha}$, y irrational. By the definition of A_{α} this means that the inequality

$$p/q - \epsilon/q^{\alpha} < y < p/q + \epsilon/q^{\alpha}$$

is satisfied in rational integers p, q, g.c.d. (p, q) = 1, for arbitrarily small ϵ . Since y is irrational there are infinitely many distinct such solutions. This shows that y is approximable to degree $>\alpha$ and therefore transcendental.

3. We now prove Theorem 1.

Let $R = \{r_n\}$, $B = \{b_n\}$, $n = 1, 2, \dots$, be the sets of all rational and all algebraic numbers in (0, 1) respectively, taken in the above enumerations. Sets $R(\epsilon_m, \alpha)$ are defined as in (3). Put

(5)
$$\mathfrak{A}_{n,m} = \{ f \mid f \in \mathfrak{R}, f(b_n) \in R(\epsilon_m, \alpha) \}.$$

Since $R(\epsilon_m, \alpha)$ is an open set dense on I, it follows that $\mathfrak{U}_{n,m}$ is, for each n, m, an open set dense in \mathfrak{K} . By Baire's Theorem [6] the set

$$\mathfrak{U} = \bigcap_{n,m=1}^{\infty} \mathfrak{U}_{n,m}$$

is therefore a dense G_{δ} -set of second category in \mathfrak{R} . Since $f \in \mathfrak{A}$ if and only if

$$f(b_n) \in \bigcap_{m=1}^{\infty} R(\epsilon_m, \alpha), \qquad n = 1, 2, \cdots$$

it follows from Lemma 2 that $f \in \mathfrak{A}$ if and only if for each $n f(b_n)$ is either rational or transcendental and approximable to degree $> \alpha$. Therefore $\mathfrak{A} = \mathfrak{K}_{\alpha}$ and the theorem is proved.

COROLLARY. Theorem 1 remains true if "approximable to degree $> \alpha$ " is replaced by "a Liouville number."

A number x is a Liouville number [3; 4] if it is approximable to any degree. To prove the corollary it suffices to take a sequence $\{\alpha_m\}$, $m=1, 2, \cdots$, of real numbers increasing steadily to infinity and with $\alpha_1 > 2$. We then consider the set

$$\mathfrak{K}_{\infty} = \bigcap_{m=1}^{\infty} \mathfrak{K}_{\alpha_m},$$

which is a dense G_{δ} -set of second category in \mathcal{K} since each \mathcal{K}_{α_m} is such a set.

References

- 1. P. Franklin, Analytic transformations of linear everywhere dense point-sets, Trans. Amer. Math. Soc. vol. 27 (1925) pp. 91-100.
- 2. Z. A. Melzak, Existence of certain analytic homeomorphisms, Bull. Canad. Math. Soc. vol. 2 (1959) pp. 71-75.
 - 3. W. J. Leveque, Topics in number theory, vol. 2, Addison-Wesley, 1956.
 - 4. T. Schneider, Einfuehrung in die transzendenten Zahlen, Springer, 1957.
- 5. K. F. Roth, Rational approximations to algebraic numbers, Mathematika vol. 2 (1955) pp. 1-20.
- 6. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton University Press, 1948.

McGill University