ON THE STRUCTURE OF CERTAIN
FACTORIZABLE GROUPS. II

DANIEL GORENSTEIN AND I. N. HERSTEIN

1. In [3], we have shown that in a finite 4 B-group G in which 4
and B are cyclic and 4 is its own normalizer, the commutator sub-
group T of G is cyclic and G=AT with ANT =1. This result can be
used to determine the structure of arbitrary 4 B-groups in which 4
and B are cyclic.

If A is a subgroup of a group G, define the subgroup N¢(4) of G
inductively by the formula Ni{(A4)=Ng(N1(4)), and denote by
N*(A) the upper bound of the subgroups N(4). Using this notation,
we shall prove the following theorem concerning 4 B-groups:

THEOREM A. Let G be a finite group of the form AB, where A and B
are cyclic subgroups of G. Then G contains a unique cyclic normal sub-
group T such that G=N*(A)T and N*(A)NT=1. Moreover, if
N*(A)=AB* with B*CB, then B* and T commute elementwise.

2. We begin with several lemmas:

LemMA 1. Let G=AB, with A and B cyclic, and assume that some
subgroup B’ of B is normal in G. Let G=G/B' =AB, where 4, B are
the images of A, B in G. Then N§(A)B' is the complete inverse image of
N§(A) in G.

Proor. Let BoC B’ with o(Bo)~=p. Since B’ is cyclic, By is normal
in G. If By<B’, set G=G/By=A B, and let B’ be the image of B’ in
G. Since G==G/ B, it follows by induction on the order of G that the
inverse image of N3(4) in G is N§ (4) B'. Hence to prove the lemma,
it suffices to show that N(EJ)ﬂ:NE(A)BO. Thus without loss of
generality we may assume o(B’) =p.

Let 4 =(a), B=(b) and B’ =(b"). It is clearly sufficient to prove
by induction on 7 that if b*& Ni(4)~!, then b*& Ni(4)B’ for some j.
Now for some integer A with 0 <A <p, we have
1 abra™! = b,

We treat the cases A\=1 and A>1 separately. If A\=1, B'CN(4).
Now if b*ENi(A)~, b*&Ni(4) and hence b*ab—+& Ni-1(4). By in-
duction bvab—*& N(A)B'. If j=0, b*ab—*E N'(4) and consequently
b*€EN2(4)=N2(4)B'. If >0, Ni(A)B'=Ni(4), and so b*EN+1(4)
= Ni+1(4)B'.
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If A\>1, it follows as above that b4ab—*E Ni(4A)B’. If Ni(4)=AB;
and B;=(b*), we have

2) brab— = a*b*b for suitable integers a, 8, 7.

Since A\ — 1, p) = 1, we can find an integer & such that y + oA
=4 (mod p). We then have

a~pvtrig = (a—lbua)(d—lbt'&a) = (aa—lbsﬂ+r1+u)br8)\ = aa—lbaﬂbu+r8’
whence b4t € Ni(4). Thus b*& N7(4)B’, and the lemma is proved.

LEMMA 2. Let G=AB, with A and B cyclic. Then G contains a cyclic
subgroup T, invariant under A, such that G=N*(A)T and N*(A)NT
=1,

Proor. Either a subgroup of 4 or a subgroup of B is normal in G
(Douglas [1]). Let 4; be the maximal subgroup of 4 normal in G,
and assume first that 4,51, If G=G/A,=4B, we may assume by
induction that G=N*(4)T, where N*(A)N\T =1, T is cyclic and in-
variant under 4. Clearly N*(4)=N*(A)~L If Ty=T"1,G=N*(4)T,
where N*(4)NTy=A4; and T, is A-invariant.

If welet Go=AT,=AB, with ByCB, it follows from our conditions
that Ng,(4) =A. The proof of Theorem A of [3] now implies that if
T=[G,, Go], then TCT,, with T cyclic, Go=AT and ANT=1. It
follows at once that G=N*(4)T with N*¥*(4)N\T =1, T cyclic and
invariant under 4.

If A;=1, we consider a minimal subgroup B’ of B which is normal
in G; and this time we set G=G/B’ =4 B. By induction G=N*(4)T,
where T is cyclic, 4-invariant, and N*(A)N\T=1. If To=T7, it
follows from Lemma 1 that G=N*(4)"1Ty=N*(A)B'To=N*(A4)T,,
where N*(4)N\T,=B’. Using the notation of Lemma 1, we consider
the cases A=1 and A>1 separately.

If A=1, set Go=AT, and Go=AT. By Theorem A of [3], T
= [Go, Go]. Hence we can find a commutator ¢ in Ty, which maps on
a generator { of T. Let o(T) =m and suppose, if possible, that ¢ has
order mp. Since o(T) =mp, it follows that Ty= (¢), and consequently
To=[Go, Go]. If ata==t°, [Go, Go] = (#*"1), and hence (¢ —1, mp) =1.
But i€ B’ and, since A\=1, B’ is in the center of G. Thus t*=at™a™
=™, whence pl (¢ —1), a contradiction.

If (t) = [Go, Go], we set T=(¢). Since o(T) =m, TNB’=1. Further-
more T is normal in G,. We conclude at once that G=N*(4)T,
N*¥(4)NT =1, T cyclic and invariant under 4.

On the other hand, if (¢) <[Go, Go], we must have To=[G,, Go].
Since Gy is an 4 B-group, its commutator subgroup T is abelian (Ito
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[4]). Now o(T) =mp and we have just shown that T, contains no
commutator of order mp. Therefore p|m.
Since T is normal in Go and is generated by ¢ and b7, we have

3) ata™! = {°b"F for suitable o, 8.

It follows that (#~!) =[Gy, Go] and hence that (¢ —1, m) =1. Since
plm, there exists an integer a such that 84+a=a¢ (mod p). Conse-
quently a(tbr=)a—t=tbPbre=¢°bre = (tb2)°. It follows that the sub-
group T = (¢b7®) is invariant under 4. Since o(T) =m, TMB’' =1, and
we conclude at once that G=N*(4)T, N*(4)N\T=1, T cyclic and
invariant under 4.

If A>1, we set T=[Go, Go]. Since TC Ty, N*(A)NTCB’. Sup-
pose, if possible, that B'C N*(A4), and let d be the least integer such
that B’CN¢(4). By definition of N¢(4), bra~'b"EN*1(4), and
hence aba~6-"=b"*"DE N4-1(4). Since A—1, p) =1, it follows that
b"EN41(4), a contradiction. Thus B’ N*(4) =1, and consequently
N*(A)NT =1. On the other hand, by Theorem A of [3], T is cyclic
and Go=AT. We conclude that in all cases G contains a cyclic sub-
group T, invariant under A4, such that G=N*(4)T and N*(A)N\T
=1,

LEmMMA 3. Let G=AB=N*(A)T with N*(A)N\T =1, where T is
cyclic and A-invariant and assume that ANB=1. If N*(4)=AB*
and AT =AB, with B*, BoCB, then (0(B*), 0(Bo)) =1, B=B*XB,,
and o(T) =0(By).

Proor. G = N*(A)T = (AB*)T = (AB*)(AT) = (AB*)(4By)
=A(B*B,). Since ANB =1, it follows that B=B*B,. On the other
hand, N*(A)N\T=1, N*(A)NAT=A, and hence N*(A)NB,
CANBy=1. Thus B*\By=1, whence B=B* XB,. Since B* and
B, are subgroups of the cyclic group B, it also follows that
(o(B*), 0(Bo)) =1.

Finally let T=(¢), where t =a%" and let o(7T") =m. Since AT = A B,
it follows as in the proof of Theorem 10 of [2] that T consists of the
elements a*b77, and since AMNB =1, these elements must be distinct
forj=1,2, ... ,mand a*"b'»=1. Hence b =1 and so o(Bo)Im. On
the other hand, if o(Bo)=n<m, a®b"=a*CANT=1, whence
a**b=a*"b™™, a contradiction. Thus o(B,) =0(7T), as asserted.

LEMMA 4. T is uniquely determined by the conditions G = AB
=N*(4)T with N*(AYNT =1, T cyclic and A-invariant.

ProoF. Suppose T, T” are two subgroups of G satisfying the condi-
tions of the lemma. Let Go=AT and G{ =AT'. Since ANT =1,
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Ng,(A) =4, whence by Theorem A of [3], T=[Gy, Go], and similarly
T'=[G{, G¢ ]. Hence to prove the lemma, it clearly suffices to show
that Go=G{.

If ANB =1, the equality of Gy and G¢ follows readily by induction
by considering G =G/ANB; hence without loss of generality we may
assume that ANB=1. If Gy=AB, and GJ =AB{, it follows from
Lemma 3 that B=B*XB, and B=B*XB{. Hence 0o(By) =0(By ).
But B, being cyclic, has a unique subgroup of any given order. Thus
Bo=Bo’ and Go=Go, .

3. Proof of Theorem A. In view of Lemmas 2 and 4 it suffices to
prove that T commutes elementwise with B*, for this will clearly
imply that T is normal in G. In this section we treat the case AMNB
=1.

Let d be the least integer such that N4+1(4)=N¢(4), so that

N*(4)=N44). Let Ni(4) =AB; with B;=(b)CB,1=1,2, - - -, d.
Then B;<B:< - - - <Bgand B;=B*. We may assume r.-lr.-_l, 1=2,
3,-++,d. N-1(4) is normal in Ni(4) since Ni(4)=Ng(N1(4)).

Furthermore let Go=AT=A4B, with Be=(b")CB and o(B,) =m.
Then T=(¢), where t=a%" for some integer s.

If s=0, T'=B,, and it is obvious that T and B* commute element-
wise. Hence we may suppose s#0 and without loss of generality that
s] h, where h=0(A4). First of all, if k <sm, a*b™™*=b"*C T, and gener-
ates a subgroup T, which is clearly invariant under B and hence is
normal in G. It follows at once by considering G/ T, and using induc-
tion on the order of G, that

4) brafp—re = thr(hlaB for some integer £.

If #n denotes the order of B¥*, we conclude at once from (4) that
t=>brangp=ran = bWk whence

(5) r(k/s)Br = 0 (mod m).
Since (n, m) =1 by Lemma 3,
r(h/s)B =0 (mod m) and b&r4b—"e = ¢, as desired.
We may therefore assume that h=sm. Fori=1, 2, - - - , d we have

(6) bmiab—ri = agw-pri-wi-l for suitable integers #;_1, v;—1, where ro = 0.

Let G! be the commutator subgroup of G;=N#(4)T. We know that
T=(t) is the commutator subgroup of Go=A47T. Since N 1(4) is
normal in Ni(4), and G;=N(4)B,, Gi-1 is normal in G;. It follows
readily by induction that G/ is generated by the elements a*~!,
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aw~1prin . . . guimt—lpri-ivi-y o Furthermore G/ is abelian since G;
is an 4 B-group for each 1.

To prove that B* and T commute elementwise, we have only to
show that b7itb—¢=¢ on the assumption that b7-1b—"-1=¢. Now from
the form of G/, we have

@) brith— = x4 where x &€ N+1(4) and «f = tx.

Since by assumption ANB=1, Lemma 3 implies o(7) =0(B,),
whence t»=1. It follows now from (7) that x™=1. Suppose for some
j>1, x€Ni(4), x&EN-1(4). Let B be the least integer such that
x#E Ni—1(A4). Since Ni—1(4) is normal in Ni(4) BI [Ni(4): Ni—1(4)]
and hence ﬁ‘l o(B*) =n. But clearly BI m since x™=1. Since (n,m) =1,

B=1 and so x&N~1(4), a contradiction. Thus x€4 and (7) takes
the form

(8) brith—rs = aryy, a’t = ta°.

Now t=a®" and ¢"=a*b for some integer o, whence b ab~s
=grtepre—D, But this implies b'@DENT1(4)NBoy=1, so that
o=1 (mod m). Since a*™ =1, we may assume ¢ =7 =1, and hence that

9) brig®h—ri = arte, brith— = a°t.

In particular, (9) implies that sI p.
Since T is normal in AT, we have finally

(10) atg™! = P for some integer A.
In view of (6)
(11) (b"a)t(b"a)“l = (aui—lb?‘o“f'ﬁ'-l"t‘—l)t(aui-lbfi+7i—lvo’—l)—‘.

Using (9) and (10) and our assumption that b7~ commutes with ¢,
we conclude readily from (11) that

(12) ar P = grptit,
Since ANT =1, p(A—1)=0 (mod k). Since k=ms and slp, we ob-
tain

(13) La (A — 1) = 0 (mod m).
s

But T is the commutator subgroup of AT, which implies A —1, m)
=1; and it follows from (13) that p=0 (mod %). Hence b7itb—"¢ =t, as
desired. We conclude that B* and T commute elementwise.

4. Finally we treat the case ANB»1. Let G=G/ANB=A4B
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=N*(4A)T, where 4, B, T are the images of 4, B, T, in G. Clearly T
is cyclic, invariant under 4, and N*(A)N\T=1. If N*(4)=4B*
with B*CB, let n=0(B*); and let m=0(T). Since ANB =1, it fol-
lows from the preceding section that (z, m) =1 and that B commutes
elementwise with T. Furthermore N*(4)~1=N*(4)(ANB)=N*(4),
and hence B* is the inverse image of B* in G. If B*= (b7d), it follows
that

(14) brath~re = xt, x&E AN B, and b & AN B.

Since ANB is in the center of G, x»=1. On the other hand (14)
yields ¢t =bmntb—ra» =x", whence x*=1. Since (#, m) =1, we conclude
that x=1; and the theorem is proved.
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