ON THE STRUCTURE OF CERTAIN FACTORIZABLE GROUPS. II

DANIEL GORENSTEIN AND I. N. HERSTEIN

1. In [3], we have shown that in a finite AB-group G in which A and B are cyclic and A is its own normalizer, the commutator subgroup T of G is cyclic and G=AT with $A \cap T=1$. This result can be used to determine the structure of arbitrary AB-groups in which A and B are cyclic.

If A is a subgroup of a group G, define the subgroup $N^i(A)$ of G inductively by the formula $N^i(A) = N_G(N^{i-1}(A))$, and denote by $N^*(A)$ the upper bound of the subgroups $N^i(A)$. Using this notation, we shall prove the following theorem concerning AB-groups:

THEOREM A. Let G be a finite group of the form AB, where A and B are cyclic subgroups of G. Then G contains a unique cyclic normal subgroup T such that $G = N^*(A)T$ and $N^*(A) \cap T = 1$. Moreover, if $N^*(A) = AB^*$ with $B^* \subset B$, then B^* and T commute elementwise.

2. We begin with several lemmas:

LEMMA 1. Let G = AB, with A and B cyclic, and assume that some subgroup B' of B is normal in G. Let $\overline{G} = G/B' = \overline{A}\overline{B}$, where \overline{A} , \overline{B} are the images of A, B in \overline{G} . Then $N_G^*(A)B'$ is the complete inverse image of $N_{\overline{G}}^*(\overline{A})$ in G.

PROOF. Let $B_0 \subset B'$ with $o(B_0) = p$. Since B' is cyclic, B_0 is normal in G. If $B_0 < B'$, set $\tilde{G} = G/B_0 = \tilde{A} \tilde{B}$, and let \tilde{B}' be the image of B' in \tilde{G} . Since $\overline{G} \cong \tilde{G}/\tilde{B}'$, it follows by induction on the order of G that the inverse image of $N_{\tilde{G}}^*(\overline{A})$ in \tilde{G} is $N_{\tilde{G}}^*(\tilde{A})\tilde{B}'$. Hence to prove the lemma, it suffices to show that $N(\tilde{g}^*\tilde{A})^{-1} = N_{\tilde{g}}^*(A)B_0$. Thus without loss of generality we may assume o(B') = p.

Let A = (a), B = (b) and $B' = (b^r)$. It is clearly sufficient to prove by induction on i that if $b^u \in N^i(\overline{A})^{-1}$, then $b^u \in N^i(A)B'$ for some j. Now for some integer λ with $0 < \lambda < p$, we have

$$ab^ra^{-1}=b^{r\lambda}.$$

We treat the cases $\lambda=1$ and $\lambda>1$ separately. If $\lambda=1$, $B'\subset N(A)$. Now if $b^u\in N^i(\overline{A})^{-1}$, $\overline{b}^u\in N^i(\overline{A})$ and hence $\overline{b}^u\bar{a}\overline{b}^{-u}\in N^{i-1}(\overline{A})$. By induction $b^uab^{-u}\in N^i(A)B'$. If j=0, $b^uab^{-u}\in N^1(A)$ and consequently $b^u\in N^2(A)=N^2(A)B'$. If j>0, $N^j(A)B'=N^j(A)$, and so $b^u\in N^{j+1}(A)=N^{j+1}(A)B'$.

Received by the editors May 4, 1959.

If $\lambda > 1$, it follows as above that $b^u a b^{-u} \in N^j(A)B'$. If $N^j(A) = AB_j$ and $B_j = (b^s)$, we have

(2)
$$b^{u}ab^{-u} = a^{\alpha}b^{s\beta}b^{r\gamma}$$
 for suitable integers α, β, γ .

Since $(\lambda - 1, p) = 1$, we can find an integer δ such that $\gamma + \delta \lambda \equiv \delta \pmod{p}$. We then have

$$a^{-1}b^{u+r\delta}a = (a^{-1}b^ua)(a^{-1}b^{r\delta}a) = (a^{\alpha-1}b^{s\beta+r\gamma+u})b^{r\delta\lambda} = a^{\alpha-1}b^{s\beta}b^{u+r\delta},$$

whence $b^{u+r\delta} \in N^{j}(A)$. Thus $b^{u} \in N^{j}(A)B'$, and the lemma is proved.

LEMMA 2. Let G = AB, with A and B cyclic. Then G contains a cyclic subgroup T, invariant under A, such that $G = N^*(A)T$ and $N^*(A) \cap T = 1$.

PROOF. Either a subgroup of A or a subgroup of B is normal in G (Douglas [1]). Let A_1 be the maximal subgroup of A normal in G, and assume first that $A_1 \neq 1$. If $\overline{G} = G/A_1 = \overline{AB}$, we may assume by induction that $\overline{G} = N^*(\overline{A})\overline{T}$, where $N^*(\overline{A}) \cap \overline{T} = 1$, \overline{T} is cyclic and invariant under \overline{A} . Clearly $N^*(A) = N^*(\overline{A})^{-1}$. If $T_0 = \overline{T}^{-1}$, $G = N^*(A)T_0$ where $N^*(A) \cap T_0 = A_1$ and T_0 is A-invariant.

If we let $G_0 = A T_0 = A B_0$ with $B_0 \subset B$, it follows from our conditions that $N_{G_0}(A) = A$. The proof of Theorem A of [3] now implies that if $T = [G_0, G_0]$, then $T \subset T_0$, with T cyclic, $G_0 = AT$ and $A \cap T = 1$. It follows at once that $G = N^*(A)T$ with $N^*(A) \cap T = 1$, T cyclic and invariant under A.

If $A_1=1$, we consider a minimal subgroup B' of B which is normal in G; and this time we set $\overline{G}=G/B'=\overline{A}\overline{B}$. By induction $\overline{G}=N^*(\overline{A})\overline{T}$, where \overline{T} is cyclic, \overline{A} -invariant, and $N^*(\overline{A}) \cap \overline{T}=1$. If $T_0=\overline{T}^{-1}$, it follows from Lemma 1 that $G=N^*(\overline{A})^{-1}T_0=N^*(A)B'T_0=N^*(A)T_0$, where $N^*(A) \cap T_0=B'$. Using the notation of Lemma 1, we consider the cases $\lambda=1$ and $\lambda>1$ separately.

If $\lambda = 1$, set $G_0 = AT_0$ and $\overline{G}_0 = \overline{AT}$. By Theorem A of [3], $\overline{T} = [\overline{G}_0, \overline{G}_0]$. Hence we can find a commutator t in T_0 , which maps on a generator \overline{t} of \overline{T} . Let $o(\overline{T}) = m$ and suppose, if possible, that t has order mp. Since $o(T_0) = mp$, it follows that $T_0 = (t)$, and consequently $T_0 = [G_0, G_0]$. If $ata^{-1} = t^\sigma$, $[G_0, G_0] = (t^{\sigma-1})$, and hence $(\sigma - 1, mp) = 1$. But $t^m \in B'$ and, since $\lambda = 1$, B' is in the center of G. Thus $t^m = at^ma^{-1} = t^{m\sigma}$, whence $p \mid (\sigma - 1)$, a contradiction.

If $(t) = [G_0, G_0]$, we set T = (t). Since o(T) = m, $T \cap B' = 1$. Furthermore T is normal in G_0 . We conclude at once that $G = N^*(A)T$, $N^*(A) \cap T = 1$, T cyclic and invariant under A.

On the other hand, if $(t) < [G_0, G_0]$, we must have $T_0 = [G_0, G_0]$. Since G_0 is an AB-group, its commutator subgroup T_0 is abelian (Ito

[4]). Now $o(T_0) = mp$ and we have just shown that T_0 contains no commutator of order mp. Therefore $p \mid m$.

Since T_0 is normal in G_0 and is generated by t and b^r , we have

(3)
$$ata^{-1} = t^{\sigma}b^{\tau\beta}$$
 for suitable σ , β .

It follows that $(\bar{t}^{\sigma-1}) = [\overline{G}_0, \overline{G}_0]$ and hence that $(\sigma-1, m) = 1$. Since $p \mid m$, there exists an integer α such that $\beta + \alpha \equiv \alpha \sigma \pmod{p}$. Consequently $a(tb^{r\alpha})a^{-1} = t^{\sigma}b^{r\beta}b^{r\alpha} = t^{\sigma}b^{r\alpha\sigma} = (tb^{r\alpha})^{\sigma}$. It follows that the subgroup $T = (tb^{r\alpha})$ is invariant under A. Since o(T) = m, $T \cap B' = 1$, and we conclude at once that $G = N^*(A)T$, $N^*(A) \cap T = 1$, T cyclic and invariant under A.

If $\lambda > 1$, we set $T = [G_0, G_0]$. Since $T \subset T_0$, $N^*(A) \cap T \subset B'$. Suppose, if possible, that $B' \subset N^*(A)$, and let d be the least integer such that $B' \subset N^d(A)$. By definition of $N^d(A)$, $b^r a^{-1} b^{-r} \in N^{d-1}(A)$, and hence $ab^r a^{-1} b^{-r} = b^{r(\lambda - 1)} \in N^{d-1}(A)$. Since $(\lambda - 1, p) = 1$, it follows that $b^r \in N^{d-1}(A)$, a contradiction. Thus $B' \cap N^*(A) = 1$, and consequently $N^*(A) \cap T = 1$. On the other hand, by Theorem A of [3], T is cyclic and $G_0 = AT$. We conclude that in all cases G contains a cyclic subgroup T, invariant under A, such that $G = N^*(A)T$ and $N^*(A) \cap T = 1$.

LEMMA 3. Let $G = AB = N^*(A)T$ with $N^*(A) \cap T = 1$, where T is cyclic and A-invariant and assume that $A \cap B = 1$. If $N^*(A) = AB^*$ and $AT = AB_0$ with B^* , $B_0 \subset B$, then $(o(B^*), o(B_0)) = 1$, $B = B^* \times B_0$, and $o(T) = o(B_0)$.

PROOF. $G = N^*(A)T = (AB^*)T = (AB^*)(AT) = (AB^*)(AB_0)$ = $A(B^*B_0)$. Since $A \cap B = 1$, it follows that $B = B^*B_0$. On the other hand, $N^*(A) \cap T = 1$, $N^*(A) \cap AT = A$, and hence $N^*(A) \cap B_0 \cap A \cap B_0 = 1$. Thus $B^* \cap B_0 = 1$, whence $B = B^* \times B_0$. Since B^* and B_0 are subgroups of the cyclic group B, it also follows that $(o(B^*), o(B_0)) = 1$.

Finally let T=(t), where $t=a^sb^r$ and let o(T)=m. Since $AT=AB_0$, it follows as in the proof of Theorem 10 of [2] that T consists of the elements $a^{sj}b^{rj}$, and since $A \cap B=1$, these elements must be distinct for $j=1, 2, \cdots, m$ and $a^{sm}b^{rm}=1$. Hence $b^{rm}=1$ and so $o(B_0)|m$. On the other hand, if $o(B_0)=n < m$, $a^nb^{rn}=a^{sn} \in A \cap T=1$, whence $a^{sn}b^{rn}=a^{sm}b^{rm}$, a contradiction. Thus $o(B_0)=o(T)$, as asserted.

LEMMA 4. T is uniquely determined by the conditions $G = AB = N^*(A)T$ with $N^*(A) \cap T = 1$, T cyclic and A-invariant.

PROOF. Suppose T, T' are two subgroups of G satisfying the conditions of the lemma. Let $G_0 = AT$ and $G'_0 = AT'$. Since $A \cap T = 1$,

 $N_{G_0}(A) = A$, whence by Theorem A of [3], $T = [G_0, G_0]$, and similarly $T' = [G'_0, G'_0]$. Hence to prove the lemma, it clearly suffices to show that $G_0 = G'_0$.

If $A \cap B \neq 1$, the equality of G_0 and G_0' follows readily by induction by considering $\overline{G} = G/A \cap B$; hence without loss of generality we may assume that $A \cap B = 1$. If $G_0 = AB_0$ and $G_0' = AB_0'$, it follows from Lemma 3 that $B = B^* \times B_0$ and $B = B^* \times B_0'$. Hence $o(B_0) = o(B_0')$. But B, being cyclic, has a unique subgroup of any given order. Thus $B_0 = B_0'$ and $G_0 = G_0'$.

3. Proof of Theorem A. In view of Lemmas 2 and 4 it suffices to prove that T commutes elementwise with B^* , for this will clearly imply that T is normal in G. In this section we treat the case $A \cap B = 1$.

Let d be the least integer such that $N^{d+1}(A) = N^d(A)$, so that $N^*(A) = N^d(A)$. Let $N^i(A) = AB_i$ with $B_i = (b^{r_i}) \subset B$, $i = 1, 2, \cdots, d$. Then $B_1 < B_2 < \cdots < B_d$ and $B_d = B^*$. We may assume $r_i \mid r_{i-1}$, $i = 2, 3, \cdots, d$. $N^{i-1}(A)$ is normal in $N^i(A)$ since $N^i(A) = N_G(N^{i-1}(A))$. Furthermore let $G_0 = AT = AB_0$ with $B_0 = (b^r) \subset B$ and $o(B_0) = m$. Then T = (t), where $t = a^*b^r$ for some integer s.

If s=0, $T=B_0$, and it is obvious that T and B^* commute elementwise. Hence we may suppose $s\neq 0$ and without loss of generality that $s\mid h$, where h=o(A). First of all, if h < sm, $a^hb^{rh/s}=b^{rh/s}\in T$, and generates a subgroup T_0 , which is clearly invariant under B and hence is normal in G. It follows at once by considering G/T_0 and using induction on the order of G, that

(4)
$$b^{rd}tb^{-rd} = tb^{r(h/s)\beta} \qquad \text{for some integer } \beta.$$

If *n* denotes the order of B^* , we conclude at once from (4) that $t = b^{rdn}tb^{-rdn} = tb^{r(h/s)\beta n}$, whence

(5)
$$r(h/s)\beta n \equiv 0 \pmod{m}.$$

Since (n, m) = 1 by Lemma 3,

$$r(h/s)\beta \equiv 0 \pmod{m}$$
 and $b^{rd}b^{-rd} = t$, as desired.

We may therefore assume that h = sm. For $i = 1, 2, \dots, d$ we have

(6)
$$b^{r_i}ab^{-r_i} = a^{u_{i-1}}b^{r_{i-1}v_{i-1}}$$
 for suitable integers u_{i-1}, v_{i-1} , where $r_0 = 0$.

Let G'_i be the commutator subgroup of $G_i = N^i(A)T$. We know that T = (t) is the commutator subgroup of $G_0 = AT$. Since $N^{i-1}(A)$ is normal in $N^i(A)$, and $G_i = N^i(A)B_0$, G_{i-1} is normal in G_i . It follows readily by induction that G'_i is generated by the elements a^{u_0-1} ,

 $a^{u_i-1}b^{r_1v_1}$, \cdots , $a^{u_{i-1}-1}b^{r_{i-1}v_{i-1}}$, t. Furthermore G'_i is abelian since G_i is an AB-group for each i.

To prove that B^* and T commute elementwise, we have only to show that $b^{r_it}b^{-r_i}=t$ on the assumption that $b^{r_{i-1}}tb^{-r_{i-1}}=t$. Now from the form of G'_i , we have

(7)
$$b^{r_i}tb^{-r_i} = xt^{\gamma}$$
 where $x \in N^{i-1}(A)$ and $xt = tx$.

Since by assumption $A \cap B = 1$, Lemma 3 implies $o(T) = o(B_0)$, whence $t^m = 1$. It follows now from (7) that $x^m = 1$. Suppose for some j > 1, $x \in N^j(A)$, $x \notin N^{j-1}(A)$. Let β be the least integer such that $x^\beta \in N^{j-1}(A)$. Since $N^{j-1}(A)$ is normal in $N^j(A)$ $\beta \mid [N^j(A): N^{j-1}(A)]$ and hence $\beta \mid o(B^*) = n$. But clearly $\beta \mid m$ since $x^m = 1$. Since (n, m) = 1, $\beta = 1$ and so $x \in N^{j-1}(A)$, a contradiction. Thus $x \in A$ and (7) takes the form

(8)
$$b^{r_i}tb^{-r_i} = a^{\rho}t^{\gamma}, \qquad a^{\rho}t = ta^{\rho}.$$

Now $t=a^sb^r$ and $t^{\gamma}=a^{s\sigma}b^{r\sigma}$ for some integer σ , whence $b^{r_i}a^sb^{-r_i}=a^{\rho+s\sigma}b^{r(\sigma-1)}$. But this implies $b^{r(\sigma-1)}\in N^{i-1}(A)\cap B_0=1$, so that $\sigma\equiv 1\pmod{m}$. Since $a^{sm}=1$, we may assume $\sigma=\gamma=1$, and hence that

(9)
$$b^{r_i}a^sb^{-r_i} = a^{\rho+s}, \quad b^{r_i}tb^{-r_i} = a^{\rho}t.$$

In particular, (9) implies that $s | \rho$.

Since T is normal in AT, we have finally

(10)
$$ata^{-1} = t^{\lambda}$$
 for some integer λ .

In view of (6)

$$(11) (b^{r_i}a)t(b^{r_i}a)^{-1} = (a^{u_i-1}b^{r_i+r_{i-1}v_{i-1}})t(a^{u_{i-1}}b^{r_{i+r_{i-1}v_{i-1}}})^{-1}.$$

Using (9) and (10) and our assumption that $b^{r_{i-1}}$ commutes with t, we conclude readily from (11) that

$$(12) a^{\rho\lambda}t^{\lambda} = a^{\rho}t^{\lambda u_i - 1}.$$

Since $A \cap T = 1$, $\rho(\lambda - 1) \equiv 0 \pmod{h}$. Since h = ms and $s \mid \rho$, we obtain

(13)
$$\frac{\rho}{s} (\lambda - 1) \equiv 0 \pmod{m}.$$

But T is the commutator subgroup of AT, which implies $(\lambda - 1, m) = 1$; and it follows from (13) that $\rho \equiv 0 \pmod{h}$. Hence $b^{r_i}tb^{-r_i} = t$, as desired. We conclude that B^* and T commute elementwise.

4. Finally we treat the case $A \cap B \neq 1$. Let $\overline{G} = G/A \cap B = \overline{A}\overline{B}$

 $=N^*(\overline{A})\,\overline{T}$, where \overline{A} , \overline{B} , \overline{T} are the images of A, B, T, in \overline{G} . Clearly \overline{T} is cyclic, invariant under \overline{A} , and $N^*(\overline{A}) \cap \overline{T} = 1$. If $N^*(\overline{A}) = \overline{A}\,\overline{B}^*$ with $\overline{B}^* \subset \overline{B}$, let $n = o(\overline{B}^*)$; and let $m = o(\overline{T})$. Since $\overline{A} \cap \overline{B} = 1$, it follows from the preceding section that (n, m) = 1 and that \overline{B} commutes elementwise with \overline{T} . Furthermore $N^*(\overline{A})^{-1} = N^*(A)(A \cap B) = N^*(A)$, and hence B^* is the inverse image of \overline{B}^* in G. If $B^* = (b^r d)$, it follows that

(14)
$$b^{rd}tb^{-rd} = xt$$
, $x \in A \cap B$, and $b^{rdn} \in A \cap B$.

Since $A \cap B$ is in the center of G, $x^m = 1$. On the other hand (14) yields $t = b^{rdn}tb^{-rdn} = x^nt$, whence $x^n = 1$. Since (n, m) = 1, we conclude that x = 1; and the theorem is proved.

BIBLIOGRAPHY

- 1. J. Douglas, On finite groups with 2 independent generators. I, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 604-610.
- 2. D. Gorenstein, Finite groups which admits an automorphism with few orbits, Canad. J. Math. vol. 12 (1960) pp. 73-100.
- 3. D. Gorenstein and I. N. Herstein, On the structure of certain factorizable groups. I, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 940-945.
 - 4. N. Ito, Products of Abelian groups, Math. Z. vol. 62 (1955) pp. 400-401.

CLARK UNIVERSITY AND CORNELL UNIVERSITY