ON THE GIBBS PHENOMENON FOR HARMONIC MEANS
FU CHENG HSIANG

1. Let a sequence of functions {f,(x)} converge to a function f(x)
for xo<x=x¢+*h, say. If, for » and 1/(x—x,) tending to + « inde-
pendently of each other, lim sup f,(x) >f(x0+0), or if lim inf f,(x)
<f(x0-+0), then we say that the sequence {f,(x) } possesses the Gibbs
phenomenon in the right hand neighborhood of the point x=x,. A
similar definition holds for the lefthand neighborhood. Let f(x) be
an arbitrary function having a simple discontinuity at the point x,.
The function

I(xo) & sinv(x — x0)

g(x) = fx) — 2 ;

T y=1 14

where I(x¢) =f(x0+0) —f(xo—0), is continuous at x,. If, in addition,
f(x) is of bounded variation in a neighborhood of x,, since the Fourier
series of g(x) converges uniformly at the point xo, the behavior of the
Fourier series of f(x)! near the point x¢ can thus be dominated by the
behavior of the series

1(x0) i sin v(x — o)

T y=1 14

and accordingly the Gibbs phenomenon of f(x) near the simple dis-
continuity x, can be indicated by the study of the special series
T— % > sinvx

~2

2 y=1 14

near the point x=0 [6, §8.51, p. 181]. Furthermore, let (p,) be a se-
quence of numbers. If

1 . Pn—v

logn =1 v

— s

as n— », then we say that (p,) is summable by harmonic means to
the sum s. It is known that if (p,) converges to s, then it is also
summable by harmonic means to the same sum.

The Gibbs phenomenon for the Cesaro, Euler, Hausdorff and Borel
means have been studied exhaustively by Cramér, Gronwall, Szisz
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1 Of course, we take here fu(x)=(I(x0)/7) X (1/») sin »x.
v=1
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and Lorch [1;2;3;4; 5]. In this note, we shall show that the Gibbs
phenomenon for the harmonic means is present at the simple dis-
continuity x, of the function f(x) which is of bounded variation in the
neighborhood of xy. Our result is the following

THEOREM. The Gibbs phenomenon for the harmonic means of the
sequence

»_ sin vx
dn(x) = Z
y=1 14

presents itself at the point x =0 and has the Gibbs ratio
2 T sin ¢
2 dnty,
T Jo t

da(x) = Z cos vidl

r=1

= sin (n + 1/2)¢

= fo 2em @z LTO@

z sin nt 1
- f di + o(— )+ 0()
0 4 n

z sin nt 1
=f dt-l-O(—)-l—O(x).
z/n ¢ n

2. We have

Denote
1 & doo(x)
Ta(%) = Z :
logn 'y v
Then
1 z 1 &, sin(n— )t 1
) = [T A, o(—) +0()
Iog ndzm b oy v n

Z — (sin nt cos vt — cos né sin vi)dt
lOg nJzm t ym1 ¥

+ 0(—) + 0(x)

=lo_g_(11-12) +0( )+O(x),

say. Write
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z sin nt o/ & LI | z sin nt
Il=f smn(f(Zsinvv)dv)dt-l-(z:——)f dt
z/n 11 t y=1 v=1 V z/n ¢

Then,

z sin nt tcos (n + 1/2)v — cos (v/2)
fi= f,,,. ! (fo 2 sin (v/2) d”) @

LN | z sin #nl
+ ( E—) f dt
y=1¥ zm L
z sin nt tsin? (nv/2
[
o tan (v/2)
z sin ni r 1 z gin nl
- — f f sin nvd‘v)dt + E —) f ——dl
v=1 V z/n 4
z ! t 2 2
Zf sin (f sin? (nv/2) dv)dl
z/n ¢ 0 v
1 z gin nt t 1 z sin nt
- -—f <f sin nvdv)dt + ( > —>f dat
2 Jom 14 0 y=1 V z/n t

+ O(»),
since the function k(v) =1/9—1/(2 tan (v/2)) is bounded, so that

z sinnt( L, 2(i_ 1 )d)dt
f,,/,, ! f" sin? (nv/2) v 2tan (v/2) i
=O< s tdt)=0*.
fz/"| sin nt | (x)

By reversing the order of integration, we find

I = Zf’/" sin? (nv/2)(f” sin nt dt)dv
0 ? z/n t
n zf’ sin? (n‘v/2)<f’ sin #nt dt) i
z/n v v 4
LI | z sin nt
+(Z—)f dt+0(x)+0< )
y=1 V z/n

=Is+14+(z")i)f: n "tdt+o<x)+o( )

y=1 V In
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z sin nt
[
z/n ¢
z/n ain2 2
0( f L(sz>
0 v
—0 ( fz/n | sin (nv/2) | dv)
0 v

= 0(x).

Furthermore, if x=1/n, I>0 being an arbitrary constant and to be
given a definite value later, then
"z gin %
f — du
t U

f nz gin? (¢/2)
0
! sinu
f dul dt
t u

t
_ Zf‘ sin? (¢/2)
0 14
_ O(f’ sin? (1/2) dt)
0 t
= 0(1).
f s nt( f (Zn: cos vv)dv)dt
y=1
fz cos nt(f sin (n + 1/2) dv)dt+0(—1—-)
o 2sin (v/2) n
% cos ni t  sin ny
f (f d)dt
o 2tan (v/2)
n ’cosnt(f d)dt+0(1>
5 jz/n . . cos nvdy "
_f"' cosnl(f‘ sin nv d)dt+0(1)
“Jon it \Ji2tan @ © "
z cos nt ¢ sin ny logn
- [ (S SR e)ar o5
z/n t 0 ? n

1
=Is+0< °g"),

n

say.

| | =2

z/n gin? (nv/2)
[,
0

?

I

|1.] =2 dt

Moreover,
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since

Z cos ni t/1 1
f ( f (— — ——————) sin nvdv)dtl
zim 4 o \ v 2 tan (v/2)

z 1 1 1
= f — f (— - ———) sin nvdv | dt
zm LiJo \ v 2 tan (v/2)
4 = dt
- n z/n t

lo
-of().
n
Now,

zIn sin ny z cos nt z sin ny z cos nt
Iy = f f dt )dv + f f dt ) dv
0 v z/n ¢ z/n v v 14
=In sin ny z dt =In sin ny z sin? (nt/2)
= f f — )dv — 2f f —dt )dv
0 v z/n 4 0 v z/n ¢
* sin ny x z/n gin ny = sin? (nt/2)
+f log—-—dv—Zf f dt )dv
z/n ? v 0 v v t

z sin nv x zIn gin ny zsin? (nt/2)
=f log—dv—Zf f dt ) dv
z/n ? v 0 ? v 4

+ O(x log n)
= Is — 2I; 4+ 0(Q1).

1| < len | sin o | ( f’sin’ (nt/2) dt)dv
0 1/ 0 14

z/n | sin ny z sin? (nt/2
_ f | sinm] f /)
0 0

v t

zIn | sin no |
=0 ( nx? f dv)
0 ?
= O(n%x?)
1
n

if I=nx as previously assigned. Making the transformation nv=u, we
see that
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"z gin % nx
I¢ = f log — du
z u u

! sinu l
= f log — du
in U u

where I=nx as given before. Thus,
! sinu 1

Is=0(1) + —— log — du
in U u

1 1
= 0(1) + O(f log — du)
0 u

= 0(1).

3. From the above analysis, it follows that

1 » o1 z sin nt x 1
7a(%) =—(E——)f dt+0( )+o< )
logn\ =1 » zin logn log n
Let x=1/n, 1>0 as assigned previously. Then, we obtain
l Un sin nt 1
()= [ ol
n o ¢ log »
! sin ¢ 1
=f m+0( )
o ¢ logn

In particular, taking /=, we obtain the upper limit of the sequence
{-r,.(x)} as # and 1/x tend to infinity independently of each other.
Eg.,

. T sin ¢
lim sup 7a(x) = f — dt.
z0 o w 0 t
This displays that the Gibbs phenomenon for the harmonic means of
sequence of functions {d.(x)} presents itself at the point x=0 and has
the Gibbs ratio as indicated in §1. The theorem is thus completely
established.
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A NEW CLASS OF INTEGRAL TRANSFORMS
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Introduction. In aerodynamics, a velocity potential is usually repre-
sented as a singular integral given by a sink and source distribution.
The integrand contains a strength factor. For cones and slender
bodies, this strength factor is determined by methods [1]% either
graphical or numerical as suggested by Tsien [2], von Kérman and
Moore [3], and other writers. An exact solution was believed to be
too difficult, for an integral equation of the first kind does not, in
general, admit a solution.

In deriving a solution of a certain aerodynamical problem, the
writer was led to a much more general class of integral equations, each
of which has, as its kernel, a Chebyshev polynomial of the first kind,
divided by the square root of the difference of two squares. The writer
was fortunate in having found the exact solution to each of these
singular integral equations. The solution is given in the form of a
singular integral involving a Chebyshev polynomial of the first kind.
The application of these results to aerodynamics is immediate.

This paper is dedicated to Professor O. Perron, of Munich, on his
79th birthday, in appreciation of his achievement as a mathematician
and for his success as a teacher.

Chebyshev polynomials of the first kind. The Chebyshev poly-
nomial of the first kind and nth degree is denoted by T.(f). It is
defined as the polynomial solution of the differential equation

¢y (@ — 1)y"(x) + xy'(x) — n’y(x) = 0
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