of z and each S_j is even. Let s be the number of points of the orbit and q any index in Q. For r < s, $(hz)^r(p, q)$ differs from (p, q) in the first coordinate; but $(hz)^s(p, q) = (p, q)$. Thus every element of G has an odd cycle. As we noted above, this implies [1] the existence of a fair game of $2^k(2^l-1)$ players.

REFERENCES

- 1. J. R. Isbell, Homogeneous games, Math. Student vol. 25 (1957) pp. 123-128.
- 2. R. D. Luce and H. Raiffa, Games and decisions: Introduction and critical survey, New York, 1957.
- 3. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. vol. 43 (1938) pp. 377-385.

University of Washington

ON INDUCED TOPOLOGIES IN QUASI-REFLEXIVE BANACH SPACES¹

LARRY C. HUNTER

1. Introduction. Let π denote the canonical isomorphism of a Banach space X into its second conjugate space X^{**} . An example is given by James [4] of a space X for which X is separable, X is not reflexive, X is isomorphic to X^{**} , and $X^{**}/\pi(X)$ is one-dimensional. Civin and Yood undertook a more complete investigation of Banach spaces X such that $X^{**}/\pi(X)$ is (finite) n-dimensional and called such spaces quasi-reflexive Banach spaces of order n. If Q is a subset of X^* , let $\sigma(X,Q)$ denote the least fine topology for X such that all $x^* \in Q$ are continuous. In [1] Civin and Yood establish the following result.

THEOREM A. The following statements are equivalent:

- (1) X is quasi-reflexive of order n.
- (2) There is an equivalent norm for X such that $X^* = Q \oplus R$ where Q is a total closed linear manifold such that the unit ball of X is compact in $\sigma(X, Q)$ and R is an n-dimensional linear manifold.

It is the purpose of this paper to study properties of the topologies $\sigma(X, Q)$, where $X^* = Q \oplus R$, Q is a total closed linear manifold, and

Received by the editors December 26, 1958 and, in revised form, May 18, 1959.

¹ This paper contains part of a doctoral dissertation written at the University of Oregon under the direction of Paul Civin and was supported in part by the National Science Foundation research grant NSF-G2573.

R is n-dimensional. It is shown that $\sigma(X, Q)$ is nothing more than the w^* -topology on X when X is considered as the conjugate space of Q.

- 2. **Notation.** Let X be a Banach space. Let π be the canonical isomorphism of X into X^{**} , its second conjugate space. For a subset A of X, A^+ will designate the annihilator of A in X^* , and A^{++} the annihilator of A^+ in X^{**} . For a set B in X^* , B^- will denote the annihilator of B in X. When we write $X = C \oplus D$, we shall mean that C and D are closed linear manifolds of X, that X is the linear span of C and D, and $C \cap D = 0$. We define $S_r = \{x \in X : ||x|| \le r\}$.
- 3. Preliminary results. If X is a quasi-reflexive Banach space of order n, then $X^{**} = \pi(X) \oplus L$ where L is an n-dimensional linear manifold. Civin and Yood note that $X^* = Q \oplus R$ where $Q = L^-$ is total and R is n-dimensional. In the proof of Theorem A, they show that for $Q = L^-$ there is an equivalent norm for X such that the unit ball of X is compact in $\sigma(X, Q)$.

The following question can then be posed. If X is a quasi-reflexive space of order n and $X^* = Q_0 \oplus R_0$ where Q_0 is total and R_0 is n-dimensional, is there an equivalent norm for X in which the unit ball is compact in $\sigma(X, Q_0)$? The following theorem shows that all decompositions of X^* of the above type arise from considering the annihilators of the n-dimensional pieces of the second conjugate space of X.

- 3.1. THEOREM. If X is a quasi-reflexive Banach space of order n and if $X^* = Q_0 \oplus S_0$ where Q_0 is total and S_0 is n-dimensional, then:
 - (i) $X^{**} = \pi(X) \oplus Q_0^+$
- (ii) there is an equivalent norm for X such that the unit ball of X is compact in $\sigma(X, Q_0)$,
- (iii) $||x|| = \sup_{x^* \in Q_0; ||x^*|| = 1} |x^*(x)|$ if X has the norm for which the unit ball is compact in $\sigma(X, Q)$.
- PROOF. (i) Suppose that $x^{**} \in \pi(X) \cap Q_0^+$. Then $x^{**} = \pi(x)$ for some $x \in X$ and for all $y^* \in Q_0$, $x^{**}(y^*) = y^*(x) = 0$. Since Q_0 is total, x = 0, and hence $\pi(X) \cap Q_0^+ = 0$. Since $X^{**}/\pi(X)$ has dimension n, it follows that Q_0^+ has dimension $r \le n$. Let $x_1^{**}, x_2^{**}, \cdots, x_r^{**}$ be a basis for Q_0^+ and select $x_1^*, x_2^*, \cdots, x_r^* \in X^*$ such that $x_i^{**}(x_j^*) = \delta_{ij}$, i, j = 1, $2, \cdots, r$. Let R be the subspace of X^* generated by x_1^*, \cdots, x_r^* . It is easily seen that $X^* = Q_0 \oplus R$ and thus X^*/Q_0 has dimension r. But $X^* = Q_0 \oplus S_0$ where S_0 is n-dimensional, so X^*/Q_0 has dimension n. Hence r = n.

- (ii) Since $X^{**} = \pi(X) \oplus Q_0^+$, the result follows immediately from the proof of Theorem A.
 - (iii) This follows immediately from Theorem 7 of [3].

In view of 3.1, we adopt the following convention. When we say that X is a quasi-reflexive Banach space, $X^* = Q \oplus R$ where Q is total and R is n dimensional, we shall always mean that X is to be considered in its equivalent norm so that its unit ball is compact in $\sigma(X, Q)$.

- 4. Induced topologies. In this section the topologies induced on X by the decompositions $X^* = Q \oplus R$, Q total, R n-dimensional, are characterized as w^* -topologies.
- 4.1. THEOREM. If X is a quasi-reflexive Banach space, $X^* = Q \oplus R$ where Q is total and R is n-dimensional, then X is equivalent to Q^* under the mapping $\nu: X \rightarrow Q^*$ defined by $\nu(x)(x^*) = x^*(x)$, all $x^* \in Q$.

PROOF. $\nu(x)$ is the contraction of $\pi(x)$ to Q. This is linear and 1-1, since Q is total. By Theorem 9 of [2], $\pi(x)$ and its contraction to Q have the same norm.

Hence $\sigma(X, Q)$ is merely the w^* -topology on X when X is considered as the conjugate space of Q and properties which hold for general conjugate spaces thus hold for quasi-reflexive Banach spaces.

BIBLIOGRAPHY

- 1. Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 906-911.
- 2. J. Dieudonné, La dualité dans les espaces vectoriels topologiques, Ann. Sci. Ecole Norm. Sup. vol. 59 (1942) pp. 107-139.
- 3. J. Dixmier, Sur un théorème de Banach, Duke Math. J. vol. 15 (1948) pp. 1057-1071.
- 4. Robert C. James, Bases and reflexivity of Banach spaces, Ann. of Math. vol. 52 (1950) pp. 518-527.

SYLVANIA ELECTRIC PRODUCTS, INC., Mt. VIEW, CALIFORNIA