
AN INFINITE PACKING THEOREM FOR SPHERES

OSCAR WESLER

By removing a sequence of disjoint circles from a given circle in

such a way that only a set of measure zero remains behind, Wolff in

1921 was able to give an example of a function defined by a series of

rational fractions which could be extended analytically into the do-

main of the "apparent poles," thereby settling a doubt that had been

raised by Denjoy, Borel and other investigators in the theory of func-

tions of a complex variable [4J. Reflecting upon this example, Borel

[l ] was led to observe that as a consequence of one of his own theo-

rems on analytic extensions the areas of such disjoint circles must

necessarily form a convergent series whose convergence is less rapid

than that of the series with general term e~*, and to wonder further

what the order of magnitude of these circles might be, and whether

one could determine it directly. It turned out that Borel's bound was

incredibly weak: the convergence is actually so much slower that the

radii of these circles can be shown to form a divergent series! That

is to say, to state it simply for the unit circle, if the radii {rk} of the

disjoint circles satisfy the condition 2~2t-irt=^< then 2~2t=irk= c0-

A proof of this, using the machinery of uniform approximations to

functions of a complex variable, can be found in Mergelyan [3]. In

this paper we give a direct and simple proof of this geometric result.

In fact, our method is such that it yields at once a result of greater

generality: we shall show that the infinite packing theorem just men-

tioned holds not only for circles in the plane, but that an analogous

result holds for spheres in «-space, as well as for more general figures.

Theorem. Let {Ck} with radii [rk], k = l, 2, 3, • • • , be a sequence

of disjoint spheres in n-space contained in the unit sphere Co and ex-

hausting it but for a set of measure zero, i.e. so that 22it~i rl=l- Then

Proof. For n = l, the theorem is trivially true. For w = 2, let C0

he the (n — l)-dimensional sphere obtained as the intersection of Co

with any hyperplane through its center, and let { Ci } be the sequence

of possibly overlapping spheres in Ci got by projecting the Ck

orthogonally onto Ci. Consider the chords of Co perpendicular to

d. Our method will consist in showing that almost every such chord

necessarily meets infinitely many of the disjoint spheres Ck in Co, so

that almost every point of Ci  is contained in infinitely many of
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the spheres Ci. It would then follow at once from the easier half of

the well-known Borel-Cantelli lemma (see, e.g. [2]) that the sum of

the (77 —l)-dimensional volumes of the spheres Ck is infinite, equiv-

alently, that Yéï-ii*~l= œ-

For each point xGCo', therefore, let 7(x) be the chord of C0 per-

pendicular to Có at x. Let E denote the set of 77-dimensional Lebesgue

measure zero, referred to in the statement of the theorem, that re-

mains behind in Co after the Ck are removed. Let um denote ordinary

777-dimensional Lebesgue measure and let M= {x\ni(L(x)f~\E) >0}.

It follows at once from un(E)=0 that p„_i(il7)=0. Consider now

only those points x£Co' —M. Suppose for such an x that the chord

7(x) meets only finitely many of the spheres Ck. Since p.\(L(x)C\E)

= 0, 7(x) must clearly be completely covered by these finitely many

spheres, hence L(x) must pass successively from one sphere to another

in this finite string of spheres through points of tangency. Since there

are at most countably many possible points of tangency among Co

and the Ck, and therefore only countably many finite subsets of these

points of tangency, it follows that there are at most only countably

many such chords 7(x) meeting only finitely many spheres, so that

for the corresponding set N of such points x we have pn_i(7V)=0.

But this means that for all points x£C0' —(M^JN), i.e. for almost

every point x of Co, the chord 7(x) meets infinitely many of the dis-

joint spheres Ck, which completes the proof.

We conclude this paper with two observations upon the hypothesis

of the theorem and the nature of the result.

First, the question invariably arises whether it is indeed possible

to so fill up or pack a sphere to within a subset of measure zero by

means of a sequence of disjoint subspheres, and this question is read-

ily answered in the affirmative. For example, to see it for circles in

the plane, let Ci be any circle interiorly tangent to Co and let C2 be

the largest circle in C0— C At this first stage it is easily checked that

with G and C2 we have removed at least 1/2 the area of Co, leaving

two "triangular" regions behind in C0. By further removing the larg-

est tangent circle and then the next largest if necessary and so on a

finite number of times from each of these two triangular regions, it

is easily seen that we can remove at least 1/2 the remaining area,

leaving behind at this second stage at most 1/4 the original area,

consisting of a finite collection of triangular regions, each determined

by three mutually tangent circles. Continuing in this way for each

of these triangular regions (removing one circle per region will usually

do) we see that at the &th stage of this procedure the area of the re-

maining set goes to zero with (1/2)*. For spheres in 77-space, another
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method may be used, as follows. Cover Co interiorly to within any

small fraction of its volume by means of a fine cubical grid and then

remove the largest sphere from within each of these cubicles. The

volume of an w-sphere with radius r being equal to 2irnl2rn/nT(n/2),

and that of a cube with side 2r being (2r)B, we have thus removed

approximately the proper fraction en=Trnl2/n2n~1T(n/2) of the vol-

ume. By using a much finer grid within the remaining set, again re-

moving spheres from the cubicles, and continuing in this way stage

after stage, we see that the volume of the set left behind is made to

go to zero with (1 — en)k as k goes to infinity.

Second, as to the statement and conclusion of the theorem, it should

be observed, by way of further generalization, that neither the nature

of the result nor the method of proof depends in any essential way

upon the fact of spheres or upon the uniqueness of their points of

tangency. When more general figures are involved, one abandons the

convenient formulation of the result in terms of radii and restates it

in terms of areas and perimeters, or volumes and surface areas. Nor

is it essential that sets of measure zero remain behind. Given any

method of packing a region Co with a sequence of disjoint subregions Ck,

which is such that the orthogonally projected images Ci of the Ck upon

some fixed hyperplane satisfy the condition juB_i(lim sup Ci)>0, it

follows by the Borel-Cantelli lemma that 22,t=i Pn-i(Ci ) = °° , a fortiori,

that 22it=ißn-i (surface Ck)= °°. The result holds, for example, for

a polygon packed to within a set of measure zero by disjoint ellipses,

for squares in a circle, for spheres in a cube, for an ellipsoid packed

to within a set of measure zero by disjoint polyhedra (a simple modi-

fication of the above argument on the chords L(x) in the neighborhood

of the boundary of the ellipsoid is required to show the countability

of the exceptional chords), and so on. We omit the details.
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