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1. Introduction. It is well known that if the dual group G of a com-

mutative group G is given the topology of point-wise convergence on

G, then G admits an isolated point if and only if G is finite; in case

G is finite, each point of G is isolated. The present paper offers an

extension of this theorem to commutative semi-groups.

1.1. Definition. A commutative semi-group is a nonempty set G

together with an operation (denoted by juxtaposition) on GXG to G

for which (ab)c = a(bc) and ab = ba whenever a, b, cGG.

1.2. Definition. A semi-character on the commutative semi-group

G is a bounded, complex-valued, multiplicative function on G which

is not identically zero. The space of semi-characters on G is denoted G.

1.3. Definition. Let F be a finite subset of G, let e>0, and let

xGG. Then the (F, e) neighborhood of % is

Ur,.(x) = {P G G\ I P(z) - x(*) |   < « for each z£f|.

The topology on G is the smallest which makes each (F, e) neighbor-

hood of each xd=.G open.

1.4. Remark. In §4 of [l], it is observed that if G'= {Tu\uGG},

where Tu= {z>GG|x(w) = xiv) f°r all x^G], then the map m—»P« is

a homomorphism of G onto G', multiplication in G' being given by

TUTV = Tuv Theorem 8 of [l] shows that G is isomorphically homeo-

morphic to (G')" under the mapping x~*x', where x'(Tu) =x(u)- We

shall therefore restrict our attention to the case G = G'. That is, we

shall suppose in what follows that G separates points in G, a condition

(see 3.5 of [l]) equivalent to the semi-simplicity of the algebra /i(G).

2. The Hewitt-Zuckerman decomposition of G. The chief result of

this paper, Theorem 5.2, depends heavily on the structural theorems

for G given in [l]. In this section we give a definition and cite from

[l] a number of results for later use.

2.1. Definition. For u, vÇ£G, write u~v ii, for each xGG, x(«) =0

if and only if x(v) =0. Let Hu= {î>GG|î"~m}.
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2.2. Theorem. ~ is an equivalence relation on G. The mapping

u-^*Hu is a homomorphism of G onto {PT„| uEG}, multiplication in the

latter space being given by HUHV=HUV.

2.3. Theorem. Let uEG. Then Hu is a sub-semi-group of G. If

vEHu and wEHu and vu = wu, then v = w.

2.4. Theorem. For each uEG,

Hu = {vEG\ |x(«)|   = 1«-» \x(v) |   = 1 for each x E 0}.

2.5. Theorem. If uEG and Hu contains an idempotent, then Hu is a

group.

2.6. Theorem. If uEG and Hu is a nongroup, then there is a

bounded, complex-valued, multiplicative function \j/ on IIU for which

0 < | ip(z) | < 1 for each zEHu-

2.7. Theorem. Under the multiplication given in 2.2, {Hu\uEG\

is an idempotent semi-group. Hence it is a semi-lattice under the partial

ordering Hu S Hv if and only if HUHV = Hu.

3. A theorem on isolated characters.

3.1. Definition. If xEG, then the support of x, denoted S(x), is

the set S(x) = {zEG\x(z) ^0}.

3.2. Proposition. For each xEG, S(x) is a sub-semi-group of G,

and G\S(x) is an ideal in G.

3.3. Notation. Let r={xGG| if zEG, thenx(z) = 0or | x(z)| =l}.
3.4. Definition.3 A subset K of G is called a face of G if, for each

u and v in G, uvEK if and only if uEK and vEK-

3.5. Proposition. IfxEG, then S(x) is a face.

3.6. Definition. Let K be a face in G, P the union of all proper

subfaces of K. The set K\L is denoted core K and is called the core

of P.

3.7. Definition. For each zEG, let Az be the intersection of all

faces containing z.

3.8. Proposition. If K is a face and zEK, then HZEK.

Proof. The set Az is a face whose characteristic function is a semi-

character assuming the value 1 at z.

3 The author wishes to thank the referee (a) in general, for his broad advice and

counsel, and (b) specifically, for suggesting Definitions 3.4 and 3.6.
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3.9. Proposition. For each zE:G,

Az= {xGG| ff„S H,)

= {x G G |  if x G G a«d x(z) ^ 0, then x(x) ^ 0}.

3.10. Lemma. Let H be an infinite commutative semi-group with

cancellation, and let F be a finite subset of H. Then, for each e>0, there

is a point p£z8 for which \p\ =1, \p(z) —1| <e for each zÇzF, and p

is not the function identically 1 on H.

Proof. Case I : H is a group. Let T denote the subgroup of H

generated by F, and suppose first that T = H. Then there are elements

Si, z2, ■ • • , zk in II for which H= [zi] ® \z2} ® ■ ■ ■ ®{zk\, where

some Zj, say zu has infinite order. Each zGühas the form z= H*-iZ}*lfe),

where each r¡ is a homomorphism on H into either the integers or the

integers modulo a certain integer m¡. Let r = max {| ri (z) | |zGF}.

Then r>0. Let 77G ]0, l[ have the property that |exp (2-irid) —1| <e

whenever \d\ <rj, and let 7G]0, l[ have the property that yr<r¡.

Define p(z) =exp (2iriyri(z)).

If Tj¿H, then we use the following theorem found, for example, in

[2, p. 99]: if T is any commutative group with identity ë, and if

zÇ^T with Z9^e, then there is a character p on T for which p(z) ^p(ë)

= 1. Taking T = H/T and zÇ.H\T, we define $(y)=P(y) for each

yen
Case II. ii is a nongroup. We consider ii to be a subset of the

group q(H) of equivalence classes of formal quotients of elements of

H, the two quotients ai/bi and a2/b2 being called equivalent if aib2

= a2bi. From Case I we obtain a non trivial character p on q(H) for

which |^(z) —l| <e whenever zÇz F. The restriction of p to II is in 8,

and if a/¿Gg(ü)\'/'-1(l)> then either Pia)^l or pib)^l.

3.11. Theorem. Lei x &e isolated in G. Then core Six) is a finite

group.

Proof. We show first that core Six) j6A. Let the (F, e) neighbor-

hood of x isolate x in G, and call this neighborhood U. We may clearly

suppose that the set Fi — FC\S(x) is nonempty. Let

Fi = [xi, xt, • ' •, x„},

and let x=XiX2 ■■•#». Then xG^(x). so Z^C-S^x) by 3.9. If Six)

^Ax, then there is a point yG-S(x) for which Hy^Hx. Let ^ be that

function on G for which p(z) =x(2) if zG^4x, '/'(z) =0 if z(£Ax. Then

^GG and i/» agrees with x on F, so that i/'G U. But ^(y) j¿0, so that

p9^x- It follows that 5(x) = AX, so that core S(x) =HX.
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Assume now that Hx is infinite. Then there is by 3.10 a point

ipEHxVfith | \j/1 =1, yp not identically 1, and \^(z) — 1 \ <e/2 for each

zE{x, xxi, xx2, ■ ■ • , xx„}. We extend ^ to all of G by defining

yp(z)=\p(xz)M(x) if zEAx, t(z)=0 if zEAx. Then ^EG and, for
each XiEFi,

I (**)(**) -x(xi)\ è 1*0*)-l|
= | faxt) - Hx) |
^ | Hxxí) - 11 + | H») - 11 < «•

We conclude that ip is finite. Then by 2.5, Hx is a finite group.

3.12. Corollary. Let x be isolated in G. Then xEY.

Proof. |x| =1 on the group core S(x). Hence |x(z)| =1 for each

sEStx).

3.13. Definition. A character on G is a semi-character on G whose

multiplicative inverse exists in G.

3.14. Proposition. Let xEG. Then x is a character on G if and

only if S(x) =G and xEY.

3.15. Theorem. Let xEG, with S(x) =G. Then, with C = core G, the

following statements are equivalent:

(a) C is a finite group ;

(b) Cj^A and 1 is isolated in C;

(c) 1 is isolated in G;

(d) x is isolated in G.

Proof. The implications (a)—>(b) and (b)—>(c) are obvious, and

(d)—>(a) is 3.8. Suppose (c) holds, and let the (P, e) neighborhood of 1

isolate 1 in G. Let U be the (P, e) neighborhood of x in G. líipE U,

then x1? = 1. so that \p = x-

3.16. Corollary. Let xi, X2EG, with S(xi)=G for i = l, 2. Then
Xi is isolated in G if and only if X2 is isolated in G.

4. An extension theorem. In this section we answer the following

question: given a semi-character xEY with core S(x)^éA and a point

yEG\S(x), can a semi-character \p be constructed which agrees with

X on 5(x) and which does not vanish at y? Theorem 4.2 shows that,

unless the answer is obviously no, the answer is yes. The author does

not know whether the hypothesis core 5(x)^A in Theorem 4.2 is

essential.

4.1. Definition. Let xEG, and let N(x), the negative set of x, be
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all yEG\S(x) for which there exist Xi, x2ES(x) with x(xi) ^x(x,d

and Xiy=x2y.

4.2. Theorem. Let x EY, with core S(x) = Hx. Suppose that

yEG\S(x), and that Axyf~\N(x) =A. Then there is a point yj/EY which

agrees with x on S(x), which assumes at y a nonzero value, and which

vanishes off of Axy.

Proof. We may clearly suppose (replacing y by xy if necessary)

that Hy<Hx. Well-order Hy. If ip(y\) has been defined for each

XEPUF, and if

(*) xv n y? = **• n y?
\eu lev

for certain elements Xi, x2EHx and certain integers rx>0, and if

x(*0- II [*(yOY* = x(x2). II [>M]rN
\eu xev

then we will say that x and \p multiply on the relation (*). For each

index u, P(/x) will be the statement that if t/UFC {X|X^ju}, and if

(*) holds, then x and \p multiply on (*).

Now let m be the smallest positive integer for which there are

points Xi, X2 in Hx for which Xiyi=x2yim+1 and, with k any complex

number for which km = x(xi)x(xï), define 4>(yi)=k. If no such m ex-

ists, let \p(yi) be any complex number of absolute value unity. P(l)

follows from the cancellation law in Hy and a theorem of Euclid. If

*(yx) has been defined for each X</j, and if P(X) holds for each

X<¿¿, we let m be the smallest positive integer for which there is a

relation of the form

ylxv n y? = «2- n y?,
Xel7 X6F

where XiEHz, U and V are nonempty collections of indices preceding

/x, and r\ are positive integers. Then, with k any complex number for

which km = x(x2)x(xi)YL^v bP(y\]rx H\eu [$(y>.)]r*, we let \¡/(y„) = k.

If no such m exists, we let ^(y^) be any complex number of absolute

value unity. Then P(ix) holds. The function \p, when defined on all of

Hy, is extended to all of G as follows: \p(z) =Tp(yz)/\¡/(y) if zEAy,

ip(z) =0 if zEAy. Then * agrees with x on Hx, hence on S(x).

5. The isolated points of G.

5.1. Theorem. If xEY, then the following two statements are equiv-

alent :
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(i) there is a neighborhood U of x in G for which UC\Y = {X} ■

(ii)  core Six) is a finite group and there is a finite subset J of G\S(x)

for which AXyC\[J\JN(x)]:Pé^. whenever y€EG\S(x) and xÇzCoreS(x).

Proof, (i)—>(ii). To see that core S(x) is a finite group, copy the

proof of 3.11, replacing the symbol G throughout by the symbol V.

Let U be the (F, e) neighborhood of x, and define J=F\S(x). If

x and y are points of core 5(x) and G\S(x) respectively for which

Axyr\[jyJN(x)]=A., then the function p given by 4.2 agrees with

X on P, differs from x at y, and is in V.

(ii)-*(i). Let e = l/4 if « = 1, 6=| l-e2*i,n\/2 if «>1, where

« = card core S(x)- Let F = core 5(x)^P Then the (F, e) neighbor-

hood of x is as required in (i).

5.2. Theorem. i/xGG, then the following two statements are equiv-

alent :

(i) x is an isolated point in G;

(ii) core Six) is a finite group and there is a finite set I of idempotents

in G\Six) for which AxyC\[l\JN(x)]^h. whenever yGG\5(x) and

xÇzCore Six).

Proof, (i)—»(ii). The first part of (ii) is 3.11. Let the (F, e)

neighborhood isolate x> and let core Six) =HX have w elements. For

each uÇzF\Six) for which AUX\AX contains at least one idempotent,

pick one such idempotent, eu. Let / be the collection of idempotents

chosen, so that card 75= card P. If (ii) fails, then there is by 4.2 a

yE:G\Six) and t/'GP for which Sip) = Axy, ̂  agrees with x on Six),

and p vanishes on I. We may suppose (since [S(p)r\F]\S(x)^^-)

that ydzF. Hence we may suppose that Hxy is covered by HX, in the

sense that there is no zGG for which Hxy<Hz<Hy. Let [yi,y2l • • -,y*}

= [Axyr\F]\Six), and let e be the identity of the group Hx. Then

eyiÇzHXy for l^i^k. There is by 2.6 a multiplicative function co on

Hxy for which 0< |co(z)| <1 whenever zÇ^Hxy. We may suppose, re-

placing co by one of its integral powers if necessary, that | w(ey,-)| <e

for l^i^k. Extend w to all of G as follows: if z<E.Axy, then co(z)

= co(xyz)/co(xy); if z(£Axy, then co(z)=0. Then co is multiplicative.

co(e) = 1 so | co| = 1 on Hx, hence on Ax. If zÇzAxy\Ax, then ezÇ_Hxy, so

that |co(z)| = |co(ez)| <1. Hence coGG. We obtain the desired con-

tradiction by noting that con is identically 1 on Ax, so that w^G U.

(ii)—>(i). First rewrite the proof "(ii)—>(i)" of 5.1 with /replaced

by I. The resulting neighborhood   U of x has the property that

Ur\T= {x}- If lAG Uf\G, then p agrees with x on Six) and p van-

ishes on I. Defining co(z) =piz)/\piz) | if z^S(p), co(z) =0 otherwise,

we have wG UC\T. Hence co=x, so that S(p) = S(w) = S(x) and p = x-



i960] interval topology on a partially ordered set 233

Bibliography

1. Edwin Hewitt and H. S. Zuckerman, The h-algebra of a commutative semigroup,

Trans. Amer. Math. Soc. vol. 83 (1956) pp. 70-97.

2. André Weil,  L'intégration dans les groupes topologiques et ses applications.

Actualités Sei. Ind., no. 869, Paris, Hermann, 1940.

University of Washington and

Harvard University

HAUSDORFFINTERVAL TOPOLOGY ON A
PARTIALLY ORDERED SET

YÁTARO MATSUSHIMA

We shall generalize a condition of E. S. Wölk [l ] that the interval

topology in a partially ordered set be Hausdorff. Let X be a partially

ordered set. For each aEX, let N(a) be the set of all elements of

X, noncomparable with a. We introduce the definition of an "a-

separating set": any subset 5 of N(a) such that every xEN(a) is

comparable with some y ES.

Theorem. // each aEX has a finite a-separating set, then X is a

Hausdorff space in its interval topology.

Proof. Let a^b, a,bEX. Let {a,-}í({6,-}í) be an a-separating

(b-separating) set; we define for each of the cases the sets A and B;

one checks easily in each case that A, B have the stated properties.

(1) The case where a, b are comparable.

(a) Let a<b. If there is an element c such that a<c<b, then,

there exists a c-separating set {c¿}, so that

m

N(c) C Z ([- », Ci] + [a, co]),    where    a E N(c).
¿=i

In this case if we put

A = [-°°,e] + H [-».c,-],        B = [c, oo] + 22 bi, °°],
i—1 i=l
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