THE ISOLATED POINTS IN THE DUAL OF A
COMMUTATIVE SEMI-GROUP!

W. W. COMFORT?

1. Introduction. It is well known that if the dual group G of a com-
mutative group G is given the topology of point-wise convergence on
G, then G admits an isolated point if and only if G is finite; in case
G is finite, each point of G is isolated. The present paper offers an
extension of this theorem to commutative semi-groups.

1.1. DEFINITION. A commutative semi-group is a nonempty set G
together with an operation (denoted by juxtaposition) on GXG to G
for which (ab)c=a(bc) and ab=ba whenever a, b, cEG.

1.2. DEFINITION. A semi-character on the commutative semi-group
G is a bounded, complex-valued, multiplicative function on G which
is not identically zero. The space of semi-characters on G is denoted G.

1.3. DEFINITION. Let F be a finite subset of G, let €>0, and let
xEG. Then the (F, €) neighborhood of x is

Urx) = {¢ €G| | ¥(z) — x(z)| < efor each s € F}.

The topology on G is the smallest which makes each (F, €) neighbor-
hood of each xEG open.

1.4. REMARK. In §4 of [1], it is observed that if G’ ={T.|«EG},
where T, = {v€G|x(u) =x(v) for all XE@}, then the map u—7T, is
a homomorphism of G onto G’, multiplication in G’ being given by
T,T,= Ty, Theorem 8 of [1] shows that G is isomorphically homeo-
morphic to (G’)” under the mapping x—x’, where x'(T.) =x(u). We
shall therefore restrict our attention to the case G=G’. That is, we
shall suppose in what follows that G separates points in G, a condition
(see 3.5 of [1]) equivalent to the semi-simplicity of the algebra /4(G).

2. The Hewitt-Zuckerman decomposition of G. The chief result of
this paper, Theorem 5.2, depends heavily on the structural theorems
for G given in [1]. In this section we give a definition and cite from
[1] a number of results for later use.

2.1. DEeFINITION. For u, vEG, write u~v if, for each xEG, x(u) =0
if and only if x(v) =0. Let H,= {vEG|v~u}.
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2.2. THEOREM. ~ 1is an equivalence relation on G. The mapping
u—H, is @ homomorphism of G onto { H.|uEG}, multiplication in the
latter space being given by H, H,= H,,.

2.3. THEOREM. Let u&G. Then H, is a sub-semi-group of G. If
v&EH, and wE H, and vu=wu, then v=w.

2.4. THEOREM. For each u&EG,
H.={v€G||xw)]| =1 |x@) | =1 for each x € G}.

u

2.5. THEOREM. If u &G and H, contains an idempotent, then H, is a
group.
2.6. THEOREM. If uEG and H, is a nongroup, then there is a

bounded, complex-valued, multiplicative function  on H, for which
0<|¢(z), <1 for each zEH,.

2.7. THEOREM. Under the multiplication given in 2.2, { H,|uEG}
is an idempotent semi-group. Hence it is a semi-lattice under the partial
ordering H,< H, if and only if H . H,=H,.

3. A theorem on isolated characters.
3.1. DeFINITION. If XEG, then the support of x, denoted S(x), is
the set S(x) = {zGGlx(z);éO}

3.2. PROPOSITION. For each xEG, S(x) is a sub-semi-group of G,
and G\S(x) is an ideal in G.

3.3. Noration. LetT'= {xEG| if 2EG, then x () =0o0r | x(2)| =1}.
3.4. DEFINITION.? A subset K of G is called a face of G if, for each
uand vin G, wvEK if and only if # €K and vEK.

3.5. ProPOSITION. If xEG, then S(x) is a face.

3.6. DEFINITION. Let K be a face in G, L the union of all proper
subfaces of K. The set K\L is denoted core K and is called the core
of K.

3.7. DEeFINITION. For each &G, let A, be the intersection of all
faces containing z.

3.8. ProrosiTION. If K is a face and zEK, then H,CK.

Proor. The set 4., is a face whose characteristic function is a semi-
character assuming the value 1 at 2.

3 The author wishes to thank the referee (a) in general, for his broad advice and
counsel, and (b) specifically, for suggesting Definitions 3.4 and 3.6.
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3.9. PROPOSITION. For each zEG,
A, ={cEG|H, = H,}
= {x € G| if x € G and x(3) = 0, then x(x) = 0}.

3.10. LEMMA. Let H be an infinite commutative semi-group with
cancellation, and let F be a finite subset of H. Then, for each €>0, there
is a point YE H for which |¢| =1, |¢(z)—1| <e for each 2 F, and ¢
s not the function identically 1 on H.

Proor. CasE I: H is a group. Let T denote the subgroup of H
generated by F, and suppose first that 7= H. Then there are elements
21, 22, - - -, % in H for which H={z}® {2} ® - - - @ {2z}, where
some z;, say 21, hasinfinite order. Each & Hhastheform z= Hj_ "(’),
where each 7; is a homomorphism on H into either the integers or the
integers modulo a certain integer m;. Let r=max {|r(2)||2EF}.
Then r>0. Let 7€ ]0, 1[ have the property that |exp (27id) —1| <e
whenever |6| <7, and let y&]0, 1] have the property that yr <7.
Define ¢(2) =exp (2wiyri(2)).

If T#H, then we use the following theorem found, for example, in
[2, p. 99]: if T is any commutative group with identity &, and if
2& T with 25¢, then there is a character ¢ on T for which ¢(z) %= (é)
=1. Taking T=H/T and s&H\T, we define ¥(y)=¢(5) for each
yEH.

Cask II. H is a nongroup. We consider H to be a subset of the
group ¢(H) of equivalence classes of formal quotients of elements of
H, the two quotients a;/b; and as/b; being called equivalent if a,b,
=asb;. From Case I we obtain a nontrivial character ¢ on q(H) for
which ]1//(2) -1 | < e whenever 2& F. The restriction of ¢ to H is in H,
and if a/bEq(H)\¢Y (1), then either Y(a) =1 or ¥(b) #1.

3.11. THEOREM. Let x be isolated in G. Then core S(x) is a finite
group.

Proor. We show first that core S(x) #A. Let the (F, €) neighbor-
hood of x isolate x in G, and call this neighborhood U. We may clearly
suppose that the set F;=FNS(x) is nonempty. Let

Fl = {xl, x?; MY xﬂ}:

and let x=x1%x; - - - x,. Then xES(x), so 4,CS(x) by 3.9. If S(x)
#= A ., then there is a point y&ES(x) for which H,2 H,. Let ¢ be that
function on G for which ¢¥(2) =x(2) if 2E4,, ¥(2) =0 if 2 A4.. Then
YEG and ¢ agrees with x on F, so that ¢ € U. But ¥(») %0, so that
Y#x. It follows that S(x) =4., so that core S(x) = H,.
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Assume now that H, is infinite. Then there is by 3.10 a point
YE A, with |1[/| =1, ¢ not identically 1, and Itﬁ(z)—ll <e€/2 for each
zE{x, XX1, XXz, ¢ * * , xx,.}. We extend ¢ to all of G by defining
Y(2) =y(xz) Y (x) if 2E4,, ¥(2)=0 if 2§ A,. Then ¢EG and, for
each x;E F,

| @) = x@)| = [¥@) — 1]
= [ ¥(z) — ¥(@)|
< | glar) — 1] + [¥@) - 1] <e

We conclude that H, is finite. Then by 2.5, H, is a finite group.
3.12. CoRrOLLARY. Let x be isolated in G. Then xET.

Proor. le =1 on the group core S(x). Hence Ix(z)l =1 for each
z2E5(x)-

3.13. DEFINITION. A character on G is a semi-character on G whose
multiplicative inverse exists in G.

3.14. PrROPOSITION. Let xEG. Then x is a character on G if and
only if S(x) =G and x<ET.

3.15. THEOREM. Let x EG, with S(x) =G. Then, with C=core G, the
following statements are equivalent:

(a) C is a finite group;

(b) C#A and 1 is isolated in C;

(c) 1 is isolated in G;

(d) x s isolated in G.

Proor. The implications (a)—(b) and (b)—(c) are obvious, and
(d)—(a) is 3.8. Suppose (c) holds, and let the (F, €) neighborhood of 1
isolate 1 in G. Let U be the (F, €) neighborhood of x in G. If y € U,
then x¢ =1, so that ¢y =x.

3.16. COROLLARY. Let x1, X:EG, with S(x:) =G for i=1, 2. Then
x1 is isolated in G if and only if x. is isolated in G.

4. An extension theorem. In this section we answer the following
question: given a semi-character x €I with core S(x) #A and a point
yEG\S(x), can a semi-character ¥ be constructed which agrees with
x on S(x) and which does not vanish at y? Theorem 4.2 shows that,
unless the answer is obviously 7o, the answer is yes. The author does
not know whether the hypothesis core S(x)=A in Theorem 4.2 is
essential.

4.1. DEFINITION. Let xEG, and let N(x), the negative set of x, be
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all yEG\S(x) for which there exist %1, x.&S(x) with x(x1) #Zx(x2)
and %1y =x,y.

4.2. THEOREM. Let x €T, with core S(x) = H,. Suppose that
yEG\S(x), and that A, \N(x) =A. Then there is a point Yy ST which
agrees with x on S(x), which assumes at y a nonzero value, and which
vanishes off of Azy.

Proor. We may clearly suppose (replacing y by xy if necessary)
that H,<H,. Well-order H,. If ¢(y\) has been defined for each
AEUUV, and if

* are [I o0 =2 [T

AeU rev
for certain elements x;, x;& H, and certain integers 7, >0, and if

x(x) - 1T oI = x@2)- I1 oD,
AU pY<i%

then we will say that x and ¥ multiply on the relation (*). For each

index u, P(u) will be the statement that if U\UVC {MA=u}, and if

(*) holds, then x and ¢ multiply on (¥*).

Now let m be the smallest positive integer for which there are
points x;, x2 in H, for which %y =x,y/*! and, with k any complex
number for which k™=x(x;)x(x2), define ¥(y:) =k. If no such m ex-
ists, let ¥(y1) be any complex number of absolute value unity. P(1)
follows from the cancellation law in H, and a theorem of Euclid. If
¥(») has been defined for each A<u, and if P(A\) holds for each
A<u, we let m be the smallest positive integer for which there is a
relation of the form

yexre [T o = %0 JT o,
reU AeV
where x;€H,, U and V are nonempty collections of indices preceding
M, and 7, are positive integers. Then, with £ any complex number for
which km=x(x2) x(x1) [rev W1 Thiev [Fn) I, we let ¢(3,) =k
If no such m exists, we let Y(y,) be any complex number of absolute
value unity. Then P(u) holds. The function ¥, when defined on all of
H,, is extended to all of G as follows: ¥(2) =¢(y2) /¥ (y) if 2E4,,
¥(2) =0 if 2 4,. Then ¢ agrees with x on H;, hence on S(x).

5. The isolated points of G.

5.1. THEOREM. If x&T, then the following two statements are equiv-
alent:
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() there is a neighborhood U of x in G for which UNT = {x} .
(ii) core S(x) s a finite group and there is a finite subset J of G\S(x)
for which A ;N\ [JUN(x)]#A whenever yEG\S(x) and xEcore S(x).

Proor. (i)—(ii). To see that core S(x) is a finite group, copy the
proof of 3.11, replacing the symbol G throughout by the symbol T'.

Let U be the (F, €) neighborhood of x, and define J=F\S(x). If
x and y are points of core S(x) and G\S(x) respectively for which
AN [JUN(x)]=A, then the function ¢ given by 4.2 agrees with
x on F, differs from x at v, and is in T'.

({i)—(@). Let e=1/4 if n=1, e=|1—e?"i/n|/2 if n>1, where
n=card core S(x). Let F=core S(x)\UJ. Then the (F, €) neighbor-
hood of x is as required in (i).

5.2. THEOREM. If XxEG, then the following two statements are equiv-
alent:

() x is an isolated point in G;

(ii) core S(x) is a finite group and thereis a finite set I of idempotents
in G\S(x) for which A,,N[I\UN(x)]#A whenever yEG\S(x) and
xEcore S(x).

Proor. (i)—(ii). The first part of (ii) is 3.11. Let the (F, €)
neighborhood isolate x, and let core S(x) =H, have n elements. For
each & F\S(x) for which 4,.\A4. contains at least one idempotent,
pick one such idempotent, e,. Let I be the collection of idempotents
chosen, so that card I<card F. If (ii) fails, then there is by 4.2 a
yEG\S(x) and Y ET for which S) =4.,, ¥ agrees with x on S(x),
and ¢ vanishes on I. We may suppose (since [S@)NF\S(x)#A)
that y& F. Hence we may suppose that H,, is covered by H,, in the
sense that there is no &G for which H,, < H, < H,.Let {y1,9, - - -, 9}
=[4.,NF\S(x), and let e be the identity of the group H,. Then
ey;E H,, for 1=7=k. There is by 2.6 a multiplicative function w on
H,, for which 0< lw(z)l <1 whenever z& H,,. We may suppose, re-
placing w by one of its integral powers if necessary, that ]w(ey;)[ <e
for 1=7=k. Extend w to all of G as follows: if 2E4,,, then w(z)
=w(xyz)/w(xy); if 2§ A4, then w(z)=0. Then w is multiplicative.
w(e)=1so le =1 on H,, hence on 4,. If & 4,,\4., then ezEH,,, so
that |w(z)| =|w(ez)| <1. Hence w&G. We obtain the desired con-
tradiction by noting that w” is identically 1 on 4., so that ™ & U.

(ii)—(). First rewrite the proof “(ii)—(i)” of 5.1 with J replaced
by I. The resulting neighborhood U of x has the property that
UNI'= {x} If Y€ UNG, then ¢ agrees with x on S(x) and ¥ van-
ishes on I. Defining w(z) =¢/(z)/ ltlx(z)| if 2E€SW), w(z) =0 otherwise,
we have w& UNT'. Hence w=x, so that S{¥) =S(w)=S(x) and ¢y =x.
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HAUSDORFF INTERVAL TOPOLOGY ON A
PARTIALLY ORDERED SET

YATARO MATSUSHIMA

We shall generalize a condition of E. S. Wolk [1] that the interval
topology in a partially ordered set be Hausdorff. Let X be a partially
ordered set. For each ¢ €X, let N(a) be the set of all elements of
X, noncomparable with a. We introduce the definition of an “a-
separating set”: any subset S of N(a) such that every xEN(a) is
comparable with some y&S.

THEOREM. If each a ©X has a finite a-separating set, then X is a
Hausdor[f space in its interval topology.

ProoF. Let asb, a, b€X. Let {a;}1({b;}3) be an a-separating
(b-separating) set; we define for each of the cases the sets 4 and B;
one checks easily in each case that 4, B have the stated properties.

(1) The case where a, b are comparable.

(o) Let a<b. If there is an element ¢ such that a <c<b, then,
there exists a c-separating set {c,»} , so that

N(@) C 2 ([, el + [e;y ©]), where ¢; € N(o).
=1
In this case if we put
A=[—°0,6]+E[—°°,Ci], B=[C’ °°]+Z[C,', °°]’
=1 1=1
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