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1. Introduction. Let be given the series

2^2 ak, with partial sums sk = ao+ • • • + ak.

Throughout the paper, k runs through the integers 0, 1, • • • and

/ , stands for /.¡°=n. The radius of convergence of the power series

2~2akzk shall be denoted by p. If p>0, we put/(z) = 2~2akZk for \z\ <p.

The following theorem about Borel's summability  method B   [6,

p. 182; 10, p. 134] is well known.

Theorem A. If 2~2ak iS summable B and 0 <p <1, then f(z) can be

continued analytically onto the disc \z—1/21 <l/2.

2~2<ik is called regularly (singularly) summable B if it is summable

B and p>0 (p = 0). Using functional analytic concepts, we show in

§3 that for each prescribed p (0<p<l) there exists a series 2^2ak

which is regularly summable B and for which f(z) cannot be con-

tinued analytically beyond the boundary of the union of the discs

\z\ <p and |z—1/21 <l/2. Analogously we deal with the case of

singular summability.

In §4 it is pointed out that the method B is not equivalent with

any row-finite matrix method. This is a consequence of the fact

that the FZT-space of all series 2~2ak which are summable B is not a

5Z:-space. About FK- and BK-spaces cf. [10, p. 29].

Gaier [4] investigated the discrete variant Bi of B. (For typo-

graphical reasons, we use Bi instead of Gaier's Bj.) The definition

of Bi is repeated in §2. A main result of Gaier is

Theorem B. If 2~2a^ is summable Bx and if there is a constant K,

0 <K <(ir2 + iy12, such that ak = 0(Kk) for k—>=o, then 2~2at is sum-

mable B.

Continuing Gaier's investigation of the method Bi, we see in §4

that also Bi, which is a row-infinite matrix method, is not equivalent

with any row-finite matrix method.

In §5 we put the question whether there is, for Bi, a theorem in the

direction of Theorem A. We get the result that if 2~2ak is summable

Bi and 0<p<l then/(z) is regular in a certain disc containing the

point z = p in its interior. The proof uses Gaier's main tool, a theorem
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of Cartwright on radial limits of entire functions.

In §6 we are concerned with gap theorems. First, it is shown how

the regularity theorem of §5 yields a new proof of, and further in-

sight into another theorem of Gaier of the BX-^B type. Second, an

assertion of Erdös is proved by a method formerly used by the au-

thors in the case of Taylor's method of summability.

2. Preliminaries. We state the definitions of the methods B and

Bi, together with other known facts needed afterwards. (For refer-

ences see §1.) We keep the notations of §1 and introduce some new

ones.

The Borel method B connects with ^ak the transform

b(x) = e~x Yu skx*/k\ = a0 +  I   e~'a(t)dt,       a(t) = X) ak+ilk/k\.
J o

Y,ak is called summable B to the value s if b(x) exists for x^O, i.e.

if a(z) is an entire function, and if 2>(x)—>5 as x—>oo. We identify

y^ak with the sequence §1= \ak}. The convergence domain (Wirk-

feld) of the method B, consisting of all 21 for which ]T)a* is summable

B, shall be denoted by 23. The distinction between regular and

singular summability splits 23 into two disjoint nonempty subsets:

23 = 23B+23S.
If 2l£23 the Laplace integral foe~z'a(t)dt is convergent for 2 = 1,

and therefore for 9îz>l (3Î means: real part). Let the disc \z—1/21

<l/2 be denoted by 77, its boundary by C. If 21653*, f(z) is defined
and regular in the union of the discs \z\ <p and D, moreover

e-"a(t)dt (dtz > 1).
o

If 2IG23S, we use (2.1) to define/(1/z) for 9te>l. With each 21 £23
there is now associated a function f(z) which is regular at least in D.

2l£23 implies B-2>***=/(«) for 0<z<l.
Gaier's modification of the method B, yielding the method Bi,

consists in replacing lim^..«, b(x) by lim,,,,*, b(n), where « = 0, 1, • • • .

In other words, Bx is the sequence-to-sequence matrix method de-

fined by the matrix (ank),

(2.2) ank = e~nnk/k\ (n, k = 0, 1, • • • , a0o = 1).

It is trivial that 23C23i, where 23i is the convergence domain of Bi,

and indeed 23^Si. If 2I£23i, then b(x) and a(t) have the same mean-

ing as before. It is clear how we define regular and singular sum-

mability Bi and how we understand the decomposition 23i =23?+23?.
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If 21G53?, then p>0 and f(z) = 22,akZk is defined and  regular for

\z\ <p. We do not define generally a function f(z) for a 2IG33?.

The Borel method B* connects with 2~2a* the transform

b*(x) =  \  e~la*(t)dt,    where    s*(*) » £ a*/*/*l.
J 0

^a/c is called summable 5* to the value s if a*(z) is an entire func-

tion and if b*(x)—>s for x—>«. The corresponding discrete variant

Z3* of 5* has also been considered by Gaier. (Gaier uses the notation

B' instead of B*.) The subsequent treatment of B and Bi is analo-

gously admitted by B* and B*. In most cases it is sufficient to observe

that summability B* (B*) of the series b0+h+ • ■ • is equivalent

with summability B (Bi) of the series 0+bo+h+ •• • . For instance,

Theorems 130 and 132 in [6, pp. 185-186] (or IV and V in [lO, pp.
135-136]) imply that Theorem A is true for B* instead of B, hence

Theorem A holds. We shall not mention B* and B* anymore.

3. Noncontinuability. Two interesting examples of elements

2IG93S were given by Hardy [6, p. 189]. In both cases the domain of

regularity of/(z) is larger than D= { \z —1/21 <1/2J. We show now

that there are many SI G 33 for which f(z) has C = {\ z —1/21 = 1/2} as

its natural boundary.

Theorem 1. There is an element 21G93S such thatf(z) cannot be con-

tinued analytically beyond C.

We only sketch the proof which follows standard lines. 93 is a F-

space whose topology is given by the semi-norms

p(f[) = sup I b(x) I ,        pM) - £j*|.«*| /*!       (i = 1, 2, • • • )

(see e.g. Wlodarski [0]; cf. [il] and §4). Since the mappings 21—>ak

are continuous linear functionals, 53 is a FK-space. Given any point

w of the exterior of D there are elements 2ioG53 such that fo(z) is

singular at z = w. The usual condensation procedure (cf. e.g. [12,

p. 421, 10.5 and 10.6]) yields the 31 in question.

The proof even shows that the set of those elements 21G 93 for

which f(z) can be continued analytically beyond C is of the first

category in 53. It follows that 93Ä is of the first, and 93s of the second

category in 93.

The same method of proof yields

Theorem 2. Given p0 (0<po<l) there is an element 21G93Ä with

p=po and such that f(z) cannot be continued analytically beyond the

boundary of the union of the discs \z\ <po and D.
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4. Nonequivalence. A 77£-space is called a 737£-space if its topology

can be given by a single norm. It is of interest to know whether or

not 23 is a BK-space. The following theorem gives a negative answer

involving an inequivalence theorem.

Theorem 3. The FK-space 23 is not a BK-space. The method B is

not equivalent to any row-finite matrix method.

A corresponding theorem is true for 23i and Bx. Since the proofs

run for both cases analogously, we restrict ourselves to the method

Bi.

First of all, we introduce a F-topology in the convergence domain

23i. The subsequent lemma is easily obtained. (See e.g. [12, p. 414],

where a similar theorem is given for functions regular in the unit

circle.)

Lemma 1. The set of elements 21, for which b(z) is an entire function,

is a FK-space with any one of the following three systems of semi-norms :

qm = sup | b(z) | (i = 1, 2, • • ■ ),
1*1=7

q,(ÏÏ) = sup J2jmsm/ml (j = 1, 2, • • • ),

Um = supj*\sh\/kl 0'= 1,2, • • •)•
i

Each of these three systems introduces the same topology.

We put

?(2I) =     sup     | b(n) | .
n = l,2,...

Then it follows from Lemma 1 (cf. [12, p. 294, 2.1 and 2.2]) that 23i

is a 77£-space with anyone of the following three (topologically

equivalent) systems of semi-norms: [q, q¡\, [q, q~j], [q, q,]

(7 = 1,2, • • ■).

Theorem 4. The FK-space 23i is not a BK-space. The method B\ is

not equivalent to any row-finite matrix method.

Intending an indirect proof of the first part of Theorem 4, we as-

sume that 23i is a BK-space. Then there exist [10, p. 30, VI] posi-

tive numbers Í7,- and a natural number m such that

qm = 0X5(20 + ?i(2I) + • • ■ + jwflD) (« G ©i;¿ = i, 2, • • • ).

This can easily be disproved by functions of the form b(z)=e~az
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where a>0 is large. Using the first part of Theorem 4, the second

part can be proved by known arguments. The reader may check e.g.

[8, p. 37], where the proof of an analogous statement is carried out

in detail.

5. Regularity. Since for a general entire function b(z) the condition

b(n)—>0 (« = 0,1, • • • ; »—*«>) is a rather weak one we cannot expect

for Bi a full analogue of Theorem A. There is, however, the following

Theorem 5. If 2~2ak is regularly summable Bi and 0<p<l then

f(z) can be continued analytically onto the disc \z — c\ <c, where

J2-V - T2)"1'2       iff = p-1 ^ (tt2 + 1)1/2,

I2-1 ifa = p"1 < (ir2+ l)1'2.

If <r <(ir2 + l)1/2, then the conclusion of the theorem follows from

Theorems A and B. The following proof treats both cases simultane-

ously.

Let be 2ÍG93f, 0<p<l, and o0 = 0. The entire function a(z) is of

order 1 and type a, and the relation

/100

e-*"a(t)dl = 2Z a.+iw-x-1 = f(l/w)
0

holds at least for ÍRw>a [l, p. 73]. We shall show that the Laplace

transform in (5.1) exists in a larger domain of the w-plane from which

the asserted regularity property will follow.

Integration by parts yields

/• x *% x

(5.2) I   e-ma(i)dl = e-(w-»xb(x) + (w - 1) I   e-<-"-^lb(t)dt.
Jo Jo

We put

g(x) = e~(^~1)'eb(x),

whereco is a fixed real number > 1. Sinceg(w) —>0 (w = 0, 1, • • • ;«—»00)

and using Cartwright's theorem ([l, p. 180]; for further references

see [4, p. 874]), we deduce that

(5.3) g(x) —> 0 (x > 0 real, x —* °o )

if there is a number a (0 <a^ir/2) for which the indicator function

h(6) of g(z) satisfies the condition h(±a) <ir sin a. We find easily

h(6) ^ 0- - a cos B (0 g 6 < 2ir).

It follows that (5.3) is true if for a suitable a we have
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co > p(ct),    where    p(a) = (a — it sin a)/cos a.

If a}t (7T2 + 1)I/2, p(a) has the smallest value (tr2 —7r2)1'2 (taken for

sin a=ir/a); if a <(ir2 + l)112, there are values p(a) which are <1.

Therefore (5.3) is certainly true if u>(a2 — ir2)1'2 in the first case, and

always in the second case.

It follows now from (5.2) that the Laplace integral in (5.1) exists

in the half-plane

((o-2 - it2)1'2    ifcrS: (x'+l)1'»,
ViW >   <

ll if a- < (w2 + l)1'2.

Herewith Theorem 5 is proved.

If crï: (7T2 + 1)1/2, the number c of Theorem 5 cannot be replaced

by a bigger one, as can be seen by the following example. (Examples

of this kind were used by Gaier [4] for similar purposes.) Let

t^I. We define ^,ak by the equation

b(x) = e(T_1)j: sin xx (x > 0).

Then Yak is summable 73i (to the value 0) and we have

sk = (2i)-\(r + iir)k - (r - **■)*), c = p"1 = (r2 + x2)1'2,

f(z) = (1 - z) £ SkZ«

= (1 - z)(2i)-1[(l - (t + i^z)-1 - (1 - (r - hr)s)-1],

(\z\   <p).

We prescribe now for <r a value ^(7T2 + 1)1/2, which means that we

have to take r = (a2 — ir2)112. f(z) has the singularities z = (r±iir)~~1,

these points being the intersection points of \z\ =p and \z — c\ =c.

(Observe that |z|=c and 3îz= (a2 — ir2)112 intersect in z = T + iir.)

Therefore f(z) is regular in \z — c\ <c, and not in \z — d\ <d for d>c.

Using known geometric properties of the Borel summability poly-

gon, we deduce from Theorem 5 immediately

Theorem 6. 7/ ^,ak is regularly summable B\ and 0 <p^=(ir2 + l)~112,

then ^,akzk is regularly summable B for 0^z<(a2 — ir2)~112 (a = p~1).

The remaining case (x2 + l)~1/2 <pi£ 1 of this theorem is settled by

Theorem B; then ^2akzh is regularly summable B for O^z^l. Theo-

rem 6, together with Theorem A, yields back the case <rj^ (7r2 + l)1/2

of Theorem 5.

6. Gaps. ^ak is said to be a Fabry gap series if ak = 0 for k¥-km,

where \km} is a sequence of integers, OSs¿o<&i< ■ ■ ■ , and km/m

—» a)   for 777—> oo .
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The regularity theorem of §5 makes possible a new approach to the

following theorem of Gaier [5, p. 496].

Theorem 7. If 2^2ak is a Fabry gap series and is regularly summable

Bi, then it is regularly summable B.

It follows from Theorem 5 and Fabry's gap theorem that a Fabry

gap series 22a* cannot be regularly summable Bi unless p = 1. Here-

with Theorem 7 is reduced to Theorem B.

Finally we are concerned with a statement of Erdös [3, p. 267]:

There exists, for Bi, no pure Tauberian gap theorem. A theorem

of this kind, indeed for Taylor's method Ta, was given also by the

authors [7, p. 223; 8, p. 49]. Erdös gave no proof for his assertion.

We show now that our method of proof in the Ta case, depending

on a result of Eidelheit and Pólya, can be used to prove Erdös'

theorem which runs as follows.

Theorem 8. Given any sequence [km] of integers, 0^&o <fa < ■ ■ • ,

then there exists a divergent series 2^2ak which is summable Bi and for

which ah = 0 for ky^km (m = 0, 1, ■ ■ • ).

Proof. First of all, we observe that the sequence-to-sequence

matrix method Bi, defined by the matrix (2.2), is equivalently given

in series-to-sequence form by the matrix (bni),

00

bnk = e~n 2~2 nj/j\ (n, k = 0, 1, • • • ; ô0o = 1).

Particularly, if 23a* W summable Bi then b(n) = 2~2bnkak

(n = 0, 1, • • • ). Since, for w = 0, 1, • • •   and & = 1, 2, • • -,

bnk = (r(Ä))-1 f e~nk-Ht
J 0

and

0 < bnk/bn+v.k Ú e"+1( f  /fc-'-i/Y  f      t*-*dt)     = e^nk/(n + l)k,

the matrix (cnm),

Cnm = b„km (n, m = 0, 1, • • • ),

has the property that, for each fixed w = l, 2, • • -, cnm/cn+i,m^0 for

m—>». Using results of Eidelheit, Pólya, and Banach [2, p. 32;

10, p. 33, III and p. 32, II] we conclude that the system of equations

2^2m-i CnmXm = 0 (n = \, 2, ■ • ■ ) has an infinite number of solutions
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{xi, Xi, • • • }. Let the sequence \xu x2, • • • } be such a solution,

not with all xm = 0. Putting x0 = 0 and observing c0i = c0i= ■ • • =0,

we have ^Z=o cnmxm = 0 (n = 0, 1, • ■ ■ ). Let ak = xm for k = km,

and ak = 0 for k^km (m = 0, 1, • • • ). The series ^ak which is now

defined satisfies the gap condition under consideration and is sum-

mable Bi since

00 00

(6.1) b(n) = Y,bnkmakm = £ c„mxm = 0        (77 = 0, 1, • • • ).
m=0 m=0

All we have still to do is, to show that ^ak is divergent. We assume

that 2Z<Zi is convergent, i.e. that {sk} is convergent. Then we have

for the entire function b(z) the estimate b(z) = 0(e21*1) for |z|—>°°. By

(6.1) and the uniqueness theorem of Carlson it follows [l, p. 153,

9.2.1, p. 75, 5.4.I] that b(z) is identically zero, implying ak = 0 for

all k. Since not all xm are zero we get a contradiction which proves

the theorem.
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