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A NEW CLASS OF INTEGRAL TRANSFORMS
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Introduction. In aerodynamics, a velocity potential is usually repre-

sented as a singular integral given by a sink and source distribution.

The integrand contains a strength factor. For cones and slender

bodies, this strength factor is determined by methods [l]2 either

graphical or numerical as suggested by Tsien [2], von Kármán and

Moore [3], and other writers. An exact solution was believed to be

too difficult, for an integral equation of the first kind does not, in

general, admit a solution.

In deriving a solution of a certain aerodynamical problem, the

writer was led to a much more general class of integral equations, each

of which has, as its kernel, a Chebyshev polynomial of the first kind,

divided by the square root of the difference of two squares. The writer

was fortunate in having found the exact solution to each of these

singular integral equations. The solution is given in the form of a

singular integral involving a Chebyshev polynomial of the first kind.

The application of these results to aerodynamics is immediate.

This paper is dedicated to Professor O. Perron, of Munich, on his

79th birthday, in appreciation of his achievement as a mathematician

and for his success as a teacher.

Chebyshev polynomials of the first kind. The Chebyshev poly-

nomial of the first kind and 7?th degree is denoted by Tn(t). It is

defined as the polynomial solution of the differential equation

(1) (x2 - l)y"(x) + xy'(x) - n2y(x) = 0
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with the initial condition y(l) = 1. Writing

(2) y(x) = x5z(x2 - 1)

where
(0        when n is even,

(3) 8= \
(1        when n is odd,

we find, after letting

(4) x2 - 1 = t,

the following differential equation for z(t) :

(5) 4t(t + l)z" + 2[2(1 + 8)1 + l]z' - 4 \—1 \--1 z = 0

where [£] denotes the positive integral part of £. The polynomial solu-

tion of (5) satisfying z(0) = 1 is

(t + l)-*>2Tn((t + l)1'2)

(6)  .jgLgjjESi^J „
[^i],"r([i].í+l)r(2í+1)

Replacing í by x2 — 1 in (6), one finds the following lemma:

Lemma 1. The Chebyshev polynomial Tn(t) defined by the differential

equation (1) and the condition y(\) = 1 can be written in the form

[î]1    «"•(Fr1]-1-»)'
(7) r.w --— x> £ -—-—;-(*■ - D*.

where 8 is given by (3).

(7) is the expression of the Chebyshev polynomial most suitable

for our discussion.

Integral equations and their solutions. A large class of integral

equations, including those mentioned in the summary, can be brought

to the form

C x   Tn(u/a)yn(u)du
(8) I     — = /„Or), a G Z, » - 0,1, 2, 3, • • •

J„       (w2 - <72)1/2
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where the integral is taken in the sense of Riemann, 7= [a: c^a^l},

c>0 a constant, and/n(<r) is defined on 7. It is assumed that

(a)/„(l)=0,
(b) (d/dcr) [o"n/n(<r)] is piecewise continuous on 7.

Condition (a) is necessary for yn(u) to remain finite on 7. The same

condition also implies that (d/dcr) [crn/„(o-)]^0; for otherwise/„(or)

= Ca~n, C constant, contradicting (a).

The solution of (8) is given by

^/"      Tn-l(u/v)d[v»fn(v)]

'        '    IT  Ju 7J»-V  -  M2)1'2

where in the case of 77 = 0, 7_i(x) is interpreted as 7i(x) by virtue

of the differential equation (1). A proof of the dual relations (8) and

(9) will be given later.

We want to note in passing that the solution of

/.' (u

yo(u)du
= 7W

Ti\m

was given as

2    d   r1    vfo(v)dv
Vo(u) =-I    -

9 duJu  (v2 - u2)1'2(v2 - u2)1'2

by M. Bôcher [4]. In case/0(l) =0, this can be reduced to the form

yo(u) =
2   f » vTx(u/v)dfo(v)

(v2 - u2)1'2fof u

by writing

(v2 - u2)1'2
dv = d(v2 — m2)1/2

and by integrating by parts. The differentiation with respect to tí

is then carried out under the integral sign.

It should be noted that condition (a) does not necessarily impose

a restriction on fn(<r). For instance, if/o(l) = C>=0, there is no loss of

generality assuming C=l. The solution of

/.

Zo(u)du

(U2 -  (T2)1'2  "

is evidently
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2 U
Zo(u) = —

r   (1 - w2)1'2

Writing

fo(<r) = l+/o»

the solution of

/• «     y0(u)du
.    (.. _ „2)1/2 -/o(ff)

(m2 - cr2)1

is obtained as

2«r       i r>    d/o*(«)   -i
y0(u) = —-I     -   .

7T L(i - m2)1'2    Ju (v2 - u2yi2\

A treatment of the general case will be given in a separate paper.

Some relations between binomial coefficients. As a preparation for

the proof of the dual relations (8) and (9), we have to establish some

useful relations between the binomial coefficients. Let us consider the

expression

gp = Í— [^icn-i)/2](1 _ x)mmA
{dx" ) _i

/  ¿[(n-2)/2]+[(n-l)/2]-p \

V    J-  U[(n-2)/2](1   _   A,)[(B-l)/2]ll
\¿yl(n-2)m+l(n-l)l2]-(,    V V J" Jj '

(10)

It is clear that

(11) gp = 0 forp = 0, 1,2, • • -, [n/2] - 1.

In case p= [n/2]+v, v^O, we find

(12)

so that one has

[^+m-'-m-'- *

(13)
,. -(-«-'« [t]'{¿-'"-'""}_

/   ¿[(B-l)/2]-,-l \

V    !-   fyCn-2)/2](1   _   ^)[<n-l)/2]ll =   Q
|¿    [(„-l)/2]-,-l    V » JJWy»- > ».

for0ái'<[(»-l)/2].
On the other hand, if we expand both (1 — x)inl2] and (1 —y)t(»-D/*l
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by binomial theorem and then differentiate the results, we will ob-

tain:

r 77 ~] |~77 — r

- b\[—.
[n/2]

£

ft-0

(- H¥îr]+k)

(14)

t(»-l>/2]

x   2

([|] -»)»'([:7i] + 4"'>

-   (m-><^-[^]>
Comparing this with (11) and (13), one finds the following useful

relations:

Lemma 2. Let n be an integer ^2. Then

(_1).([^I] + t)!
[n/2]

4-0

(15)
([i] - OKrr1]+ * - p>

t(»-l)/2]

x    £
„-0

:-«'([^]+">

-= 0

for p = 0, 1, 2, 3, • • • , [n/2]+ [(n —1)/2] — 1, where for every p only

one of the factors is zero.

In addition to Lemma 2, one will find that it is useful to prove

Lemma 3. Let n be an integer 2:2, then we have
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For proof of (16) one considers the expression

"2UxI =  \  x^M-^l - xY^-Vl
J a

which is [(«-l)/2]![(«-2)/2]!/([«/2]+[(«-l)/2])!, when consid-

ered as an Euler's integral and is identical to the left hand side of

(16) when (1— x)[(n_1)/2] is expanded before integration. This com-

pletes the proof of (16).

Proof of the dual relations. On ground of conditions (a) and (b),

it is obvious that the integral in (9) exists, and that the double

integral:

2   r1    Tn(u/a)     r'T^u/v^vMv)]
(17) I =-I    - I    -du,

■K   J 0     (U2- 0-2)ll2Ju        »"-V  -  U2)1'2

obtained   by directly substituting   (9)  in  (8), is convergent.   This

double integral can be written as

2 Ç~Çl  Tn(u/<T)Tn-i(u/v)d[v"fn(v)]

' 7   ™  J„+i   J„+e  V"-\(u2 - a2)(v2 - tt2))1'2

Since the above integrand remains finite and has at most a finite

number of points of discontinuity in the region

R:  <
U  +  €  g   M g   1,

it is justified to interchange the order of integration in R. Thus we

obtain

2           r1    d[v»fn(v)] /•—    Tn(u/a)Tn-i(u/v)du
I =-hm   I        - I        - ■

■K  <-o  Jff+2e        fl"-1      J,+e    ((u2 - <r2)(v2 - u2))1'2

Because Tn(u/<r)Tn-i(u/v) is continuous and finite in the interval

v^ufía and

/.

du2

the integral

,    ((u2 - a2)(v2 - u2))1'2

•    Tn(u/<r)Tn-i(u/v)du

f ((u2 - o-2)(v2 - u2))1'2

exists; so that one can write
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2   /■1d[»"/«O0] C   Tn(u/a)T„-i(u/v)du(is)      i      2 r ^'/«wj r r-
7T   J„ 7J"-1 J„     ((tt2((«2 - <J2)(V2 - u2))1'2

From Lemma 1 we have

t(^\t  o(u\-    l2J     'f'Y
" V <7 /    "    \vj       r77-21 (    A <r /

,g,,™( ) 2W"([^] + t)!([!Lii]+')'

1   1
X-(U2 - O-2)^!»2 - tt2)".

O-2*    V2"

Substituting (19) in (18), writing (u2—a2) = (v2 — a2)x, and making

use of the following Euler's integral of the first kind :

(2k)\(2ii)\(v2 - a2y+"

22k22"k\p.\(k + !i)\

(18) reduces to

r '   d[vnfn(v)] / V y
(21) /="J V7J m

where t = v2/a2 and

[7}

(20)     f (m2 - <r2)*-1/V - W-y-^du2 = v

Bit) =

[¥}
(22)

,f .,g„ <->K Fi-]+*) < \rr\+') * - 1)w'r

([|]-*)l([^]-.)»*W(*+,)l

The dual relations will be established if we can prove that

(23) /K»-D/«J5(0 = /["/2l+t("-D/2l.
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To prove (23) we expand (t— l)k+f according to the binomial theorem.

This results in

tUn-l)IVB(t)

12 J   Mi v L 2 J+ 7! i^2i(
n — 2'

+ *>'

Frr " ([7]-)»'  "="   (rr1]-')"'
*+«    (_1)X¿[(B-l)/2]+&-X

¿Í     (^ + p-X)!X!

Writing [(«—1)/2]+£ —X=p, we have

/l(n-l)/2]jB(/)   =

"«1 / r» — in      \
—   ! (-1)*(    -   +*)!

.2]    i*™        VL 2 J     )
~n — 2

[(n-l)/2]

x    2~2
p-0

o-([^] + .)i

([^]-p)v,
[(n-l>/2]+*

x      Z
(-i)'/"

p=i(B-l)/2]-p      / n — V

K'+>-\rrï)+ k-p)i(p + p

From Lemma 2 one finds for w>2

/t(»-D/21B(/)   =

/2]+[(n-l)/2]

l(n-l)/2]

x   E
p=0 (m-xm-)-

which reduces to (23) by means of Lemma 3.
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Dividing (23) by /K»-D/2] one obtains

(24) B(t) = ft»'*!.

Introducing (24) into (21) and using the relation

(25) 2|JM + « = *,

one finds for 77^2,

7= -o-" f d[v»Mv)] -/.(#).

The cases 77 = 0, 1 can be verified by direct substitution of (9) in (8).

This completes the proof of the following theorem.

Theorem. Given fn(cr) on I, satisfying the conditions (a) and (b),

the solution of (8) is given by (9), where Tn(t), 77 = 0, 1, 2, • • • , are

Chebyshev polynomials of the first kind, and 7_i(/) = Ti(t).
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