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1. Introduction. The geometric phenomenon which may now

properly be referred to as the theorem of Sylvester has received con-

siderable attention during the past decade (see bibliography). This

theorem asserts that if a finite number of points in En (or real projec-

tive »-space) is such that any line joining a pair of points of the set

contains at least three points of the set then the entire set is a subset

of a line. For historical remarks and references see [5].

The most recent generalization known to us is that due to Grün-

baum [3], in which points in En are replaced by compact connected

sets (continua) in E2. More specifically, if [Si] is a finite collection

of disjoint plane continua such that any line cutting two distinct sets

also cuts some third then the sets are all subsets of the same line.

In this note we weaken the hypotheses and strengthen the conclu-

sion, obtaining a result which may be regarded as, in some sense, the

best possible in this direction.

Theorem. If {5¿} is a finite collection of bounded closed disjoint

sets in En, at least one of which is infinite, such that any line cutting

two distinct sets intersects at least one more, then the sets are all subsets

of the same line.

The proof is presented in §§2 and 3. The example of a family of

three or more parallel lines shows that the assumption of boundedness

cannot be dropped. Now consider three disjoint sets A, B, and C

of the unit interval of the x-axis each of which is everywhere dense

in the interval. At each point of A erect a unit interval parallel to the

y-axis and call the union of such segments A*. With B* and C*

similarly defined, it is clear that a line intersecting any two of the

sets must intersect the third, and it follows that the assumption of

closure cannot be dropped. Finally, the nine points of the Pappus

configuration may be arranged in three sets such that a line cutting

any two intersects the third. In particular let A, B, and C be three

points on one line, A', B', and C three points on another, while

ABT\A'B=X, AC'C\A'C=Y, and BCT\B'C=Z. The three sets
are then Si={A, A', Z},S2={B,B', Y), S3={C, C, X}. Thus the

theorem is not valid without some restriction on the power of the sets.
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2. The two-dimensional case.

Definition 2.1. An En-X in En which intersects 5 and is such that

at least one of the open half-spaces defined by that En-i contains at

most a finite number of points of S is a pseudo-support En_i of S.

Lemma 2.1. If {Si} is a finite collection of (at least two) disjoint

bounded closed sets of the plane with 0Si = 'S infinite, then there exists an

index k, a point PkÇLSk and a line I through Pk, which is a pseudo-

support line of2 — Sk and at least one of whose open half-lines defined by

Pk is free of points of 2'.

Proof. There is a support line X of 2' which intersects 2' in

exactly one point, say, PkCzSk . This follows from the fact that the

convex cover of 2' certainly has a support line intersecting the cover

in a single point, which point is clearly a point of 2'. We will suppose X

to be horizontal and the open half-plane above X to be free of points

of 2'. If X intersects 2 — Sk then X is the line I required in the lemma.

For, if there were infinitely many points of 2 — Sk above X then

2' — Sk would have a point either above X or on X, neither of which is

possible. If X does not intersect 2 — Sk, then there is a first line /

through Pk, proceeding from X either clockwise or counter-clockwise,

which does. This line / then satisfies the requirements of the lemma.

Theorem 2.1. Let {Si} be a finite collection of disjoint bounded

closed subsets of the plane with 2 = US¿ infinite. Then either 2 is a

subset of a line or there exists a line cutting exactly two of the sets.

Proof. Let / and Pk be chosen according to Lemma 2.1. We sup-

pose / to be horizontal, the open half-plane above / to contain at

most finitely many points of 2 — Sk, and the open left half-line of /

defined by Pk to be free of points of 2'. We consider the following

three cases (which are not mutually exclusive).

Case 1. There exists a sequence of points {(?>} in the half-plane

above I with lim Q¡ = Pk. Consider the point P*£2 — Sk on I which is

furthest to the right or furthest to the left of Pk. One of the lines

P*Qi meets exactly two of the sets 5¿.

Case 2. There exists a sequence of points {Q,} in the half-plane

below I with lim Q¡ = Pk. (a) If there are points of 2 — Sk on / to the

right of Pk, let P* be the nearest one of these to Pk. One of the lines

P*Qj meets exactly two of the sets 5¿. (b) If there is no point of

~L — Sk on I to the right of Pk, let P* be any point of 2 — Sk on / to

the left of Pk. Again one of the lines P*Q¡ meets exactly two of the

sets Si.
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Case 3. There exists a sequence of points \Qj] on I with lim Q¡

= Pk; we assume that all Q¡ are on one side of Pk. If all of 2 — Sk lies

on I, but Sk has points not on /, then any line through a point of

2 — Sk and a point of Sk not on / will do. We assume that 2 — 5^ has

points not on I. There is a first line /' through Pk proceeding counter-

clockwise from I which has a point in common with 2 — Sk. If

/'P\(2 — Si) has points below /, let P* he, among these latter points,

the furthest from Pk or the nearest to Pk, according as [Qj] lies to

the left or to the right of Pk, respectively; if IT\(Z — Sk) has no points

below / then let P* be any point of l'f~\ÇE — Sk). In any one of these

cases, one of the lines P*Q¡ intersects exactly two of the sets Si.

3. The principal theorem.

Lemma 3.1. Let {.S,} be a finite collection of (at least two) disjoint

bounded closed subsets of En with 2 =U5¿ infinite and suppose that

any -E„_i containing points of two different sets contains only a finite

number of points of 2. Then there exists a k and a pseudo-support

£n_i, 7, of 2 — Sk with yf\Sk ¿¿0.

Proof. We consider a support E„_i, a, oí 2' and suppose that a

fails to have the desired property.

Case 1. a contains points of two distinct sets. We refer to a as

horizontal and observe that a contains a point, say PmES'm, as well

as a point of a second set Sk, h^m. One of the open half-spaces de-

fined by a, say the upper, is free of points of 2', but it must contain

an infinite number of points of 2 — Sm, otherwise a would have the

desired property. Now a contains but a finite number of points of 2

and hence there is an Z¿B_2, say ß, contained in a which is a support

£B_2 for ai\1i' in a and which contains exactly one point of aP\2',

say PkESk. There is a sequence of points {Q,} above a with lim Q¡ a

point of ai}(2 — Sk)''. It is now clear that for some/ the ZiB_i defined

by ß and the point Qj is a pseudo-support £B_i of 2 — Sk and contains

a point PkESi.

Case 2. a contains points of but one set Sk- Again referring to a as

horizontal we observe that one of the half-spaces, say the upper,

defined by a contains but a finite number of points of 2 — Sk. Consider

an .EB_2, say ß, contained in a with ßf\Sk 9¿0. Now the family of

.EB_i's containing ß has a first element proceeding in either direction

from a which contains points of 2 — Sk. Such an element 7 is a pseudo-

support £„_i for 2 — Sk and intersects Sk .

Theorem 3.1. Let  {S,]  be a finite collection of disjoint bounded
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closed subsets of En with 2 = U5t- infinite. Then either all the sets are

subsets of the same line or there exists a line cutting exactly two of the

sets.

Proof. We make the inductive assumption that the theorem is

true in 7sn_i and suppose further that 2 is not a subset of a line.

If there exists an En-i, a, intersecting two of the sets with aPi2

infinite, then the sets aC\Si satisfy the inductive hypothesis and

hence there is either a line Una meeting exactly two of the sets aC~\Si

or the sets ai\Si are all subsets of the same line. In the former case I

intersects exactly two of the sets Si. In the latter there must be a point

of 2 not on the line. Such a point and the line define a plane ir. The

sets irC\Si satisfy the hypotheses of Theorem 2.1 and hence there is a

line cutting exactly two of the sets iri\Si and perforce exactly two of

the sets Si.

We may now suppose that any En-i intersecting two of the sets

contains a finite number of points of 2. Lemma 3.1 assures the exist-

ence of y, a pseudo-support £n_i for 2 — Sk, intersecting Sk . One of

the open half-spaces defined by y contains at most a finite number of

points of 2 — Sk. Call this the upper half-space and consider the case

in which there are infinitely many points of Sk above y. There is then

a sequence of points {Qj} above y with lim Qj = PkÇE.Sk . Let P* be a

point of 7C\(2 — Sk) furthest from Pk. If P*G-5m then it is clear that

one of the lines P*Qj meets only the sets Sk and Sm.

There remains to consider the case in which there are at most a

finite number of points of 2 above y. In this event, consider the con-

vex cover of y/^\2'. This set is, of course, not empty since it contains

Pk. If the only points of 2 in this cover are points of Sk, consider a

sequence of points [Q,-] below y with lim Q¡ — Pk together with any

point RÇ.yC\Ç2i — Sk). Then one of the lines RQ¡ will intersect exactly

two of the sets.

If the convex cover of 7^2' contains points of 2 — Sk, let Pm be a

vertex of this cover, POT£Sm, and consider a point P* of the cover,

not in the set Sm, but nearest to Pm. There is a sequence of points

{Rj} below 7 with lim R3=Pm. One of the lines P*R¡ will intersect

exactly two of the sets S{.

4. The finite case. The example of the Pappus configuration, men-

tioned in the introduction, shows that it is possible to have three dis-

joint finite sets such that any line cutting two of the sets cuts the

third without the three sets being subsets of the same line. It seems

likely to us that, aside from a "few" basic projective configurations,
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Theorem 3.1 can be extended to cover the finite case. However, the

best we have been able to do is the following.

Theorem 4.1. If {5,} is a finite collection of disjoint sets with

2 = {JSi finite, and any line cutting two of the sets cuts at least two more

sets then 2 is a subset of a line.

Proof. Let A(X, YZ) denote the distance from the point X to the

line joining the points F and Z. Suppose now that 2 is not a subset of

any line, and consider the minimum of all positive values of A(X, YZ)

for XG2 and F and Z points of two distinct sets S{. Let A(P, QR)

be this minimum. Observe that the line /, joining Q and R contains

points from four different sets, three of which are different from that

containing P. If A, B, and C are three points on / belonging to these

three sets then at least two of them, say A and B, fall on one of the

closed half-lines of / defined by P*, the foot of the perpendicular from

P to the line I. Assuming the order ABP*, we see that 0<A(73, AP)

<A(P, QR), a contradiction.

Added in proof. In a paper entitled A further generalization of a

problem by Sylvester, Riveon Lematematika, 1957, M. Edelstein has

extended the result of Grünbaum [3] in a somewhat different direc-

tion.
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