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1. Introduction. There are two kinds of primary abelian groups

without elements of infinite height which can be described as being

completely known. First, there are the direct sums of cyclic groups.

Then there are those which, in the natural £-adic topology, coincide

with the torsion subgroups of their completions. These are called

torsion-complete [l, Exercise 58]. In each of these two cases the further

knowledge of the Ulm invariants is sufficient to characterize the

group.

It seems appropriate to combine the two and consider the class of

groups obtained by taking the direct sum H®K of a torsion-complete

group ii with a direct sum K of cyclic groups. We call such a group

semi-complete. While the representation H®K of a semi-complete

group G as a direct sum of a torsion-complete group and a direct sum

of cyclic groups is not unique, some measure of uniqueness is present

(Theorem 2), and any two such representations have isomorphic re-

finements (Theorem 3). These facts lead to an isomorphism theorem

for semi-complete groups in terms of the Ulm invariants of G, H and

K (Theorem 4).

As an application, in §4 we use semi-complete groups to exhibit a

continuum number of reduced primary abelian groups, each the

power of the continuum, all with the same Ulm invariants, no two of

which are isomorphic.

The material in this paper is essentially a portion of a doctoral

dissertation submitted to the University of Chicago. The author

wishes to thank Professor Irving Kaplansky for his constant advice

and encouragement.

2. Let G be a primary (always for a fixed prime p) abelian group

without elements of infinite height, i.e., one for which D„ pnG — 0. The

p-adic topology on G is obtained by using the subgroups pnG as a

base for the neighborhoods of 0. Equivalently, G is a normed group,

the norm of a nonzero element x being 2~h<-x). Here h(x) denotes the

height of x, the largest non-negative integer « for which x is in pnG.

If II is a subgroup of G and // is pure ipnGC\H=pnH for all «), the
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p-adic topology of H is the same as the topology induced by that of

G.
The torsion subgroup G* of the completion of G is again a primary

abelian group without elements of infinite height [l, Lemma 17],2

and G is a pure subgroup of G* [l, Lemma 18]. G* is called the

torsion-completion of G, and G is torsion-complete in case G = G*. Thus

G is torsion-complete if every Cauchy sequence {x¿} of G, for which

the orders of the elements x,- are bounded, converges.

In any event, G*/G is divisible. For if z is an element of G*, the

density of G in G* gives an element x in G such that z — x is in pG*,

which shows that G*/G=pG*/G.

Our first lemma shows that G and G*, while in general not iso-

morphie, have the same Ulm invariants.

Lemma 1. Let G be a primary abelian group and H a pure subgroup

such that G/His divisible. Then the nth Ulm invariant f G(n) of G equals

the nth Ulm invariant f h (n) of H for every finite ordinal re.

Proof. If P denotes the subgroup of G annihilated by p, the injec-

tion H—+G induces a map

cb:(Pr\ pnH)/(p r\ pn+iH) -»(?n pnG)/p( r\ pn+iG).

By the purity of H, (Pr\pn+1G)r\(Pr\pnH) =PC\pn+1II and so <p is

injective. This shows that/#(re) úfo(n).

On the other hand, if z is an element of PC\pnG, the divisibility

of G/H provides an element x in H (in fact, in pnH) such that z — x

is in pn+1G. Then p(z-x) = -px is in pn+2Gr\H=pn+2H. Say — px

= pn+2y wnere y is in H. The element x+pn+1y is in PC\pnH and

z—x— p*+1y is in Pr\pn+1G. This shows that the coset z+Pi\pnG is

the image of the coset x+pn+1y+Pr\pnH and so <j> is surjective.

Thus/»(»)=/<*{»).
To obtain an explicit description of torsion-complete groups, one

can appeal to a theorem of Fleischer and Kaplansky [l, Theorem 22] :

every torsion-complete group G* is the torsion-completion of a direct

sum of cyclic groups. In fact, G* is the torsion-completion of the sub-

group B generated by a maximal pure independent subset of G*. B

is a direct sum of cyclic groups and G*/B is divisible. (Such a sub-

group is called a basic subgroup [2, p. 181].) B is unique up to iso-

morphism for B is a direct sum of cyclic groups, and by Lemma 1

the Ulm invariants of B are those of G*. If we write B = ¿JBn, where

Bn is the direct sum of all the given cyclic summands of B of order pn,

s Only slight modifications are needed to adapt the results of §16 in Kaplansky's

book to the case we are considering.
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it is easy to see that the torsion-completion of B is the torsion sub-

group of the direct product IJj3„. in particular, we see that a direct

sum of cyclic groups is torsion-complete if and only if it is of bounded

order.

3. Let G be a semi-complete primary abelian group. For brevity,

let us agree to call a decomposition G=H®K of G standard if the

first summand H is torsion-complete and the second summand A is a

direct sum of cyclic groups. In general, G will have many standard

decompositions. For example, if G = H®K is a standard decomposi-

tion of G and if K = S®K' where 5 is of bounded order, another

standard decomposition of G is G = H'®K' where H'=H®S; simi-

larly for direct summands of bounded order of H. However, direct

summands of unbounded order cannot be so shifted without destroy-

ing the standardness of the decomposition, and this is reflected in

the following theorem.

Theorem 1. Let G = H®K be a standard decomposition of the semi-

complete group G, and let T be a pure torsion-complete subgroup of G.

Then there exists an integer n such that Pr\pnT(ZH.

Here P, as usual, denotes the subgroup of G annihilated by p. We

first prove two technical lemmas.

Lemma 2. Let {xt} be a sequence of elements of order p in the primary

abelian group G. If &(*,)=»<, say Xi = pnigi, where ni^n,- for i?¿j,

then the subgroup S generated by the g/s is pure and is the direct sum

of the cyclic groups generated by the gis.

Proof. If 5 is not the direct sum of the cyclic groups generated

by the gis, a relation aiXi+ • • • +a8x, = 0, with not every a¿ a

multiple of p, must hold. But this requires at least two of the x/s

to have the same height, contrary to hypothesis.

If x is an element of order p in S, x is a linear combination of

the x/s by what we have just shown. Its height in G, and in S, is the

smallest of the heights of the x/s which appear nontrivially in the

linear combination. Hence 5 is pure [l, Lemma 7].

Lemma 3. Let G and G' be primary abelian groups without elements of

infinite height and ir be a homomorphism of G into G' such that for all

n, Tr(Pr\pnG)?¿C). Then there exists a pure subgroup S of unbounded

order of G, such that the restriction of w to the closure S of S is an iso-

morphism.

Proof. Using the fact that for all », ir(PH\pnG)¿¿0, we extract

a sequence {x,} of elements of P such that xi =7r(x¿)5¿0 and such
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that h(xi+i)>h(xi) for every i. Let A(x,)=re¿ and h(x¡)=n¡,. We

have niSn{<n2Sn{< • • ■ . Say Xi = pnigi and x' =pnigi in G and

G', respectively, (g/ will not, in general, be the image of g¿.) Let S

and S' be the subgroups of G and G' generated by the g/s and by the

gi 's. By Lemma 2, 5 and S' are pure in G and G' and are the direct

sums of the cyclic groups generated by the g¿'s and the gi 's. ir induces

an isomorphism between Pf~\S and PT\S', and thus the restriction

of ir to S is an isomorphism. (The image of S will not, in general, lie

in S'; P' denotes the subgroup of G' annihilated by p.)

We note that in G', pn',S'T\P' = pn'ir(S)r\P', for both are generated

by the elements x/ forjé*.

Now let y be an element of order p in S for which ir(y) =0. Say

v¿—>y where y¿ is in S. We can suppose that y—y i is in pniG for every i.

A simple argument shows that, since S is pure, each yt may be as-

sumed to be of order p. Thus — ir(yi) =ir(y — y¡) is in pniGT^ST^P'

which is pniir(S)i^P'. Since tt on 5 is an isomorphism, this implies

that y i is in pniS. This proves that y = 0.

Proof of Theorem 1. If Pr\pnTC\_H for all re, Lemma 3 applies

to show that there exists a pure subgroup S of unbounded order in P

such that the projection ir: G—>P is an isomorphism when restricted

to the closure 5 of S. Now S is pure [l, Lemma 20], and so the p-adic

topology on 5 is the same as that induced by that of P. This means

that 5 is torsion-complete. But 5 is isomorphic to a subgroup of K

and every subgroup of K is a direct sum of cyclic groups by a theorem

of Kulikov [l, Theorem 13]. We conclude that S is of bounded order,

a contradiction.

Examples show that the stronger assertion, pnTEH for some re, is

not true in general.

With Theorem 1 at hand we proceed to establish a relationship

between two standard decompositions of a semi-complete group.

Theorem 2. Let G = H®K and G = H'®K' be standard decomposi-

tions of the semi-complete group G. There exists an integer re such that
pnH^pnH' and pnK^pnK'.

Proof. Applying Theorem 1 twice, we deduce that for some non-

negative integer re, we have PC\pnH=PC\pnH'. Hence PC\pn+iH

= Pr\pn+iH' for every non-negative i. This implies that the Ulm

invariants of the torsion-complete groups pnH and pnH' are equal,

so that pnH^pnH'.

To show that pnK and pnK' are isomorphic, we will show that

(PC\pn+iK)/(Pr\pn+i+1K) and (Pr\p"+iK')/(Pr\pn+i+1K') are iso-

morphic. It will follow that pnK and pnK', as direct sums of cyclic
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groups with the same Ulm invariants, are isomorphic.

From G = H®K, we have Pr\pn+iG=Pr\pn+iH®Pnpn+iK. The

kernel of the map Pr\pn+iG-^(Pr\pn+iK)/(Pr\pn+i+1K) is Pi\pn+iH

+ PC\ pn+i+1G. Thus (P r\ p*+*G)/(P r\ pn+iH + P C\ p»+i+1G) and

iPr\pn+iK)/iPnpn+i+1K) are isomorphic. Repeating the argument

for G = H'®K', we obtain a similar isomorphism with H and K re-

placed by H' and K'. Since Pr\pn+iH = Pr\pn+iH', the desired iso-

morphism is evident.

In the course of the proof, we saw that PC\priH = PC\pnH' for a

suitable «, so that, in this sense, PCXH is unique. It is easy to see that

the corresponding assertion for K and K' is false and that it is possible

to have KC\K' = Q.
Theorem 2 lends itself to showing that any two standard decom-

positions G = H®K and G=H'®K' of a semi-complete group have

isomorphic refinements. We write K = 2-^»' and K' = ^A/ where

every A,- and K[ is a direct sum of cyclic groups of order p\ Also let

H and H' be the torsion subgroups of 17if,- and H-H7 where every*

Hi and #7 is also a direct sum of cyclic groups of order p\ For every

i, Hi®Ki and if/ ®K¡ are isomorphic for each is the direct sum of

fa(i — l) copies of the cyclic group of order p\ In addition, if « is as

in Theorem 2, H&éHl and K&Ki for i^n. This leads to the follow-

ing theorem.

Theorem 3. Any two standard decompositions G = H®K and

G = H'®K' of a semi-compete group G have isomorphic refinements.

Specifically, subgroups 8, 8', K, and K' of H, H', K, and K' exist

with H and 8' torsion-complete, so that G=B®B®K and G = 3'

®B'®K' where B and B' are of bounded order and 3^3', K^K',

B^B'.

Proof. Take H to be the torsion subgroup of the direct product

Q//¿ for i^n, K to be the direct sum 2~2^tI0r i = n, and B to be the

direct sum J2(Hi®Ki) I0r i<n- Similarly for 3', K', and B'.

4. Let G and G' be semi-complete groups with the same Ulm in-

variants. Suppose G = H®K and G'=H'®K' are standard decom-

positions. When are G and G' isomorphic? The answer is given by the

following corollary to the discussion above.

Theorem 4. G and G' are isomorphic if and only if there is an «

such that for every i^n, the ith Ulm invariants of H and H' are equal

and the ith Ulm invariants of K and K' are equal.

As an application of Theorem 4, we show that there exist at least
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a continuum number of nonisomorphic groups, each the power of

the continuum, having the same Ulm invariants. We do this by deter-

mining the semi-complete groups G = H@K having for every i, an

ith Ulm invariant equal to 1. Such a group is determined up to iso-

morphism by the knowledge of the set 5 of non-negative integers i

for which the ith Ulm invariant of ii is 1. For every subset S of the

set / of non-negative integers, denote by Gs the semi-complete group

obtained in this way. If S and 2 are two subsets of I, Theorem 4 tells

us that Gs and Gs are isomorphic if and only if the symmetric

difference 5AS is finite. Further, Gs is countable only if S is finite,

and is otherwise of the power of the continuum. This proves that

there are a continuum number of these groups having the cardinality

of the continuum.
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