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A. D. Wallace in [lO] and Wallace and R. J. Koch in Theorem 3

of [3, p. 683] have shown that if a topological semigroup with unit

is a metric indecomposable continuum then it is a topological group:

it is known that a solenoid is both a compact connected group and

an indecomposable continuum. We have shown [5] that any compact

indecomposable continuum 7 contains a widely connected subset W

such that W = 1: below it is shown that if 7 is also a topological group

with unit and other stated simple properties, then W can be taken

so that it is a widely connected topological group. Here W is non-

bicompact and it nowhere contains an arc in contrast to the well

known result by Pontrjagin that a bicompact connected topological

group does contain an arc. Koch in [2] has shown recently that a bi-

compact connected topological semigroup with unit contains an arc;

in contrast to this we also give below an example of a biconnected

topological semigroup: it is nonbicompact, it has a unit and also a

dispersion point at its zero.

To show the existence of both of these we make strong use of

Zermelo's well ordering theorem and assume the hypothesis of the

continuum. The existence proof is a modification of the well known

one used by Knaster and Kuratowski in [l, pp. 241, 250] to show the

existence of a biconnected set. It is a modification of this by Wilder,

which does not make a strong use of Zermelo's well ordering theorem,

which we use in [5] to show the existence of a widely connected set:

however we are unable to use this below because the construction

must give also the desired algebraic properties.

We recall the following definitions. The connected set W is widely

connected if and only if every nondegenerate connected subset C of W

has the same closure that W does, i.e. C=W. The connected set B is

biconnected if and only if it is not the union of two disjoint nondegen-

erate connected subsets; dSB is a dispersion point of B if 73— d is

totally disconnected. For more basic topological definitions see Moore

in [4] or Wilder in [ll]; bicompact is as in [ll, p. 34]. For theorems

on indecomposable continua see Moore in [4, pp. 75-77]. We denote

the null set by 0. For basic semigroup definitions see Wallace in [9].
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A topological semigroup 5 is a Hausdorff space together with a

continuous associative operation. Let Z as below be a metric inde-

composable continuum and also a topological semigroup with unit.

We call the associative operation on Z a multiplication and multi-

plication by an inverse a division, using symbols • and ■*• for these.

By Gen (p), we mean the set of all elements of I which can be built

up by multiplications and divisions by pEI, i.e. with p as generator:

obviously Gen (p) contains p, its inverse and the unit if the inverse

exists. Similarly Gen (P) means the set built up by these operations

with P as generating set. Below we will choose a class \pa] of ele-

ments of Z. We take Pi = Gen (pi) and Pa = Gen ((\JPß)VJpa) for

(ß<a) where ß and a are ordinals.

We need the following Algebraic Assumption, denoted by (*AA)

below: Let g and G each be a product of a finite number of elements of I;

let H(p, G) be a similar product including n occurrences of pEI and

n' occurrences of the inverse of p : then we assume that there exist only a

countable number of solutions p of H(p, G) =g.

Lemma 1. If [pa] is a countable class, paEI, then Gen ((Jpa) is also

countable, i.e. the set generated by [)pa is countable.

The proof is elementary.

Lemma 2. Let I be a compact indecomposable continuum which is a

topological semigroup and (*AA) holds; let also P and Q be countable

subsets of I such that Gen (P) and Gen (Q) are disjoint. Then there

exists pEI such that p is not contained in any composant of I which

contains a point of Gen (P)UGen (Q) and Gen (P\Jp) and Gen (Q)

are disjoint.

Proof. Let pEI- Let F(p, P) be any element of Gen (P^Jp) and

H be any element of Gen (Q). The equation F(p, P) =H may involve

n' occurrences of the inverse of p and say », §¡1, occurrences of p it-

self. By our Algebraic Assumption (*AA) above it has at most a

countable number of solutions p. By an argument similar to that of

Lemma 1 with n and n' fixed there are only a countable number of

possible equations of type F(p, P) =H. This is then also true when

one varies n and n'. Thus there exist but a countable number of solu-

tions p of all possible equations of type F(p, P) =H.

By Lemma 1 we see that Gen (P) and Gen (Q) are both count-

able. Hence Gen (P)VJGen (Q) is contained in the union of a count-

able number of composants of Z and Z has uncountably many dis-

joint composants [4, p. 77]. Thus p can be chosen in a new composant

of Z and so that it is not the solution of an equation of type F(p, P)
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= 77 above. Therefore p can be chosen as desired in the lemma such

that Gen (P\Jp) and Gen (Q) are disjoint.

Lemma 3. Let I, P and Q be as in Lemma 2. Let T be a perfect subset

of I. Then there exists q£E.T such that Gen (P) and Gen (Q\Jq) are

disjoint.

Proof. Let qGTCZI. Let 7(2, Q) be any element of Gen (Q\Jq)

and 77 be any element of Gen (P). Then as in the argument in the

proof of Lemma 2 we conclude that there exists but a countable

number of solutions q of all the possible equations of type F(q, Q) =77.

By Lemma 1, Gen (Q)WGen (P) is countable and T is known to be

uncountable. Therefore 2<G 7 can be taken so that it is not contained

in Gen (0WGen (P) and is not a solution of an equation of type

7(2, Q)=77. Hence Gen (P) and Gen (QSJq) are disjoint and the
lemma is true.

We need the following. We say that S is a separating boundary of

a set 7 if and only if B is the common boundary in 7 of two disjoint

non-null open subsets of 7. The construction of the widely connected

set .S below is based upon Knaster and Kuratowski's well known

Theorem 37 of [l, p. 233] for an 77-dimensional metric space, n~^2,

stating that SC7 is disconnected if and only if there exists a separat-

ing boundary B of 5 such that I—SH)B, i.e. SC\B = 0. We denote

the class of separating boundaries of 7 by \Ba}, noting that IH>\}Ba.

We denote the class of perfect subsets of 7 by { Ta}. As noted in [l,

pp. 248-251] both {Ba} and { 7«} have the power 2Ko of the linear

continuum under our assumptions. We note that each Ta is of the

power of the linear continuum ; also each Ba is, since 7 contains un-

countably many disjoint composants each dense in 7, disregarding the

trivial 7 degenerate case.

Theorem 1. Let I be a compact metric indecomposable continuum

which is a topological semigroup with unit; let also (*AA) be true and

each proper subcontinuum of I be a simple continuous arc. Then I con-

tains a widely connected topological semigroup S with unit: S = I.

Proof. Let Q be the first transfinite ordinal whose cardinal is that

of the linear continuum, i.e. is 2N°. We follow Knaster and Kura-

towski's well known construction in [l, pp. 248-251] well ordering

each of the classes {Ba} and { Ta} as follows:

Bi, B2, • • • ; Bw, •••;••■;••-, Ba, ■ ■ ■ a < 0,

7i, 72, • • • ; 7a,, •••;•••;••■, Ta, • • • a < 0.

We now use Lemmas 2 and 3 alternately to choose points pa and qa.
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The set Upa will be widely connected, but we need for closure in

multiplication more points than that, i.e. we need Gen (Upa): we

have no control over where the points Gen (\Jpa) —Upa may occur

and it is this fact which adds complexity to our construction. How-

ever Lemmas 2 and 3, and the countability given by Lemma 1 and

the hypothesis of the continuum, enables us to choose the pa and qa

so that Gen (\}pa) and Gen (Ug„) are disjoint: this permits us to

prove the theorem.

Choose piEBi and let Pi = Gen (pi:). Yet in Lemma 3 P = pi and

Q = 0. Then we can choose qiETi such that Pi and Gen (Q\Jqi), = Qi

say, are disjoint. Now using Lemma 2 we can choose p2EB2 — Pi — Qi

such that Gen (PiUpi), =P2 say, and Gen (Qi) are disjoint; we note

this last fact lets us say merely choose p2EB2; also p2Ea composant

of Z which does not contain a point of Gen (Pi)WGen (Qi). We fol-

low this by choosing q2ET2 — P2 — Qi, i.e. p2ET2, using Lemma 3,

such that Gen (P2) and Gen (Qi^Jqi) are disjoint.

We continue this process of choosing pa and qa for (a<i2) by trans-

finite induction. Consider the case where we choose pß and qß, where,

for all (a<ß), pa and qa already have been chosen. We note that

Ç/3 = Gen (Uqa) and Pß = Gen ((Upa)yjpß); also note that Gen (Uqa)

= Gen (UÇ«) so that we need not distinguish between these. Thus

using Lemma 2 we choose pßEBß such that Gen (l)Qa) and

Gen (pßVJ^pa)) are disjoint and pß is in no composant of Z which

contains a point of Gen (U¿>a)WGen (UQa). Then qßETß is chosen

according to Lemma 3. This process is possible because at any step

Gen (\)pa)\JGen (Uqa) is countable by Lemma 1 and the hypothesis

of the continuum, while both Bß and Tß are uncountable sets.

Let 5 = Gen (Upa), = Gen (UP„), for (a < U) : S is our desired widely

connected topological semigroup as we now show. By Knaster and

Kuratowski's Theorem 37 above we see that 5 is connected because

for each separating boundary Ba oí I, and so of S, we have paES,

i.e. BaC\S9£0. We note that each neighborhood in our metric Z had

a Ba as boundary and so S = I, i.e. S is dense in Z. Suppose that 5

is not widely connected, i.e. that 5 contains a nondegenerate con-

nected subset C such that Sp^C. Then CEI = S is a proper subcon-

tinuum of Z and so, by our hypothesis in Theorem 1, C is a simple

continuous arc. Hence CZ)o, Ta; thus the nondegenerate connected

set C, ES, contains an arc and so a Tß, although from our proof q$

is not an element of Gen (Upa) =S. Therefore S must be widely con-

nected.

We have constructed an ascending tower of semigroups P1CP2

C ■ ■ • CPaC • • •   for (a<U) above. If p, qE^Pa, then p, gEsome
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Pa and so pqG.PaQS. Hence 5 is a semigroup inheriting the associa-

tive multiplication property from 7: that its multiplication is con-

tinuous is also an inheritance from 7. Hence 5 is a widely connected

topological semigroup and so the Theorem is true, noting that the

unit G Gen (pi)dS.

Corollary 1. Let I be as in Theorem 1. Then I contains a widely

connected topological group S and S = 1.

Proof. As noted above Koch and Wallace have shown that 7 is a

topological group. Hence, if ;p£7, its inverse exists: thus each

pÇzSQI of Theorem 1 has its inverse. Similarly we note that 5 in-

herits all the properties from 7 which it needs in order to be a topo-

logical group. Thus the corollary is true.

We remark: If 7 had a more complicated algebra involving both

• and + then Lemmas 1, 2 and 3 go through for Gen (P) redefined

by using + — ••*-; thus we might be able to prove that 7 contains

densely a widely connected subset which inherits this algebra. See

perhaps [7, pp. 140-141]; if the example there is true, it is non-

bicompact by [2].

We need the following in order to show the existence of a bicon-

nected topological semigroup. Let N= {x\0 ^¡x^l} and C be the

Cantor ternary set on N. Let 7 be the cartesian product CXN, with

however (c, 0) the same point (0, 0) for all cÇzC. Let (c, x)-(c', x')

= (c-c', x-x') for c, c'ÇzC and x, x'ÇzX, where c-c' can be taken so

that x-x' is by the ordinary multiplication of real numbers. Then 7 is

known to be a topological semigroup ; also 7 is one of the sets used by

Knaster and Kuratowski in [l, pp. 241, 250] to construct a bicon-

nected subset 5 with dispersion point (0, 0), and dense in 7. Thus we

can use 7 to obtain the following:

Theorem 2. If (*AA) is true in I above, then there exists a bicon-

nected topological semigroup S with a unit and with a dispersion point

at (0, 0) where 5 = 7.

Proof. We state (*AA) for this new 7 and make similar changes

in Lemmas 1, 2 and 3. We use the method of the proof of Theorem 1,

taking however, each Ba not containing (0, 0). Following Knaster

and Kuratowski in [l, pp. 241, 250] there is no difficulty in seeing

that a similar construction to that used for Theorem 1 above gives

a biconnected topological semigroup S, dense in 7, with (0, 0) as its

dispersion point and with (1, 1) as unit.

Because of the length of the above we give the properties we obtain

of biconnected semigroups and widely connected semigroups in [6J.
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