WIDELY CONNECTED AND BICONNECTED SEMIGROUPS
PAUL M. SWINGLE

We have shown in [7] that under certain assumptions both widely
connected and biconnected topological semigroups exist. As point
sets both of these sets have peculiar properties including the fact
that the only continua either can contain are degenerate connected
sets; this gives contrast to the well known result by Pontrjagin that
a bicompact connected topological group contains an arc; also R. J.
Koch has shown recently [2] that a bicompact connected topological
semigroup with unit also contains an arc; our semigroups here are
obviously not bicompact. Below we develop some further properties
of these as semigroups.

We assume that we have a topology under which S is a nondegen-
erate connected semigroup; this involves a continuous associative
multiplication which is a mapping m: SX.S—S. We recall from [8,
p. 254] that S is widely connected if and only if every nondegenerate
connected subset has the same closure that S has. We need below
that m be extendable to S, the closure of .S, and that S be a compact
perfectly separable space: we will also take it as a Hausdorff one.
Our first results deal with the properties that m must have if Sis a
widely connected semigroup and our last if .S is a biconnected semi-
group with dispersion point, recalling from [1, p. 214] that S is
biconnected if and only if it is not the union of two disjoint nondegen-
erate connected subsets; and d is a dispersion point of S if and only
if S—d is totally disconnected.

We write & for the null set. We mean by M — N the set
{pI;DEM but p nonEN}. For basic definitions see Moore in [3]
and Wallace in [4]. We recall, for 4, BCS, then AB=m(A4 XB)
={m(a,b)|a€A4,bEB} ={abla€4,bEB}. If x&Sand x2=x, then
x is an idempotent of S and E= {x|x?=x, xES}. If g =NCS, then
N is a left ideal if SNCN; N is a right ideal if NSCN; N is an ideal
if it is both a left and a right ideal. Below by 4, B, C and D we
always mean the following:

(1%) 4 = {a|aSisapoint,a €S}, B= {b|Shisapoint,b & S}
C={c|SDS,c€S} and D={d|SdDS,decsS}.
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LeMMA 1. If S is a semigroup and if aS and Sb are both points for
some a, bES, then Sb=aS=a?=0b? and aS is a minimal ideal of S.

Proor. If aS is a point for some ¢ES, then aS=aa=a? and
similarly Sb =252 Also SSbC.Sb=>5?2 and so Sb is a left ideal and obvi-
ously minimal. Similarly S is a minimal right ideal. Since it is a
known and easily proved property that each left and right ideal inter-
sect, we see that aS=Sb=a? and so a? is a minimal ideal of S.

LEMMA 2. If S is a topological semigroup and A #= & #~B, then A and
B are each closed in S and SB=A4S=a?ES.

ProorF. Since A # =B, from (1*) we see that there exist aEA4
and bE B satisfying Lemma 1 and so aS=Sb=a? and ¢S is a minimal
ideal of S. If a’ €4, since each left and right ideal intersect, we see
that ¢’S=aS. Thus it follows that 4.5 =SB =a2. It easily follows that
A, and similarly B, is closed for under the supposition that it is not,
one gets a contradiction with the fact that m: SX.S—Sis a continuous

mapping.

LemMA 3. If S is a topological semigroup, then C and D are each
closed in S.

Proor. It easily follows that C, and similarly that D, is closed for
under the supposition that there exists ¢¢&S—C and ¢o is a limit
point of C we have that ¢,S DS is false by definition (1*) of C. For
a fixed s&.S there exist ¢;&C for (1=1, 2, - - - ) and ¢/ €S such that
cic! =s, because from (1*) ¢;SD.S. Then, since S is compact and per-
fectly separable, there exists ¢/ €3 such that ¢y Xcd is a sequential
limit of a subsequence of U(¢;Xc/!); it follows that coec{ =s and so
€08 DS, which is a contradiction.

LeMMA 4. If S is a widely connected semigroup, then, for each a, bE S,
aS is either a point or aSDS; similarly Sb is either a point or SbDS.

Proor. Since S is connected, it is known and easy to prove that
aS and Sb are both connected. By definition of widely connected
then aS is either a point, i.e. a degenerate connected set, or .S and
aS have the same closure, i.e. (closure of a.5) =52S. It follows with-
out difficulty from the fact that m: SX.S—S is a continuous mapping
that (closure of aS)=aS. Thus either aS is a point or aSDS and
similarly either Sb is a point or S5 S.

LeMMA 5. If S is a widely connected semigroup and A #* & #B, then
C=g=D.
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Proor. By Lemmas 2 and 3, 4 and C are each closed; by Lemma 4,
S=A\UC and so S cannot be connected unless C= . Similarly for D.

THEOREM 1. If S is a widely connected semigroup then one of the
following cases must be true: (1) S=A =B,1.e. S=ANB;(2) S=4=D,
te. S=AND; (3) S=B=C, i1.e. S=BNC; (4) S=4JC=D where
A#=Z, 1.e. S=AJ(CND); (5) S=BUD=C where B, i.e.
S=BU(CND); or (6) S=C=D, i.e. S=CND.

ProoF. By Lemma 4 for ¢ €S either a4 or aEC. Thus S=4 or
S=C or S=AUC. Similarly for &S either 6&B or b&D. Thus
S=B or S=D or S=B\UD. Thus for S=4 we can have (1) S=B
or (2) S=D, but by Lemma 5 we cannot have S=4=¢ and
S=BUD where B&# & #D. Also for S=C we can have (3) S=B or
(6) S=Dor (5) S=BUD. For S=4\UC we cannot have 4= =B
and C# ¢ and so cannot have S=B by Lemma 5; we can have (4)
S=D but cannot have S=B\UD unless it is one of the other cases.
Hence we conclude that the Theorem is true.

CoRroLLARY 1.1. % cases (1)—(3) of Theorem 1 we have S2C E, where
E 1is the set of tdempotents of S.

Proor. Consider as typical the cases (1) and (2) where S=4. Let
aE4,ie aS=a? by (1*). Let ab& S2 Then ab=a?; also a(badb) =a?
Therefore ab=a%=(ab)? and so ¢b&E E and hence S?CE.

LEMMA 6. Let S be a semigroup and aSS. Then a® is a right zero of
S if Sa is a point; also a? is a right zero of S only if Sa is a point, if
also, for each s< S, there exists some bE.S such that ba=s.

Proor. Consider the case where Sa is a point. Then Sa=a? For
each bE.S there exists s=ba & S; then (ba)a =a%=0ba?. Hence a?is a
right zero of S.

Consider the case where a? is a right zero of S. Then, for bES,
ba?=a? Hence Sa=aa, for if s&.S there exists 5&.S such that ba =s.

CoOROLLARY 1.2. If S is a widely connected semigroup, then for every
a &S we have a? is either a zero, a left zero or a right zero of S in cases
(1), (2) or (3) respectively of Theorem 1.

Proor. That a? is a right zero in case (3) follows at once from
Lemma 6; in case (2) a similar lemma would show that a2 is a left
zero; the combination of these gives that a? is both a left and a right
zero, i.e. a zero, of S in case (1).

We remark that the widely connected semigroup of which we



252 P. M. SWINGLE [April

showed the existence in [7], being a topological group, was case
(6) of Theorem 1 as Lemma 6 shows.

THEOREM 2. If S is a widely connected semigroup, then the minimal
ideal K of S always exists in cases (1)—(5) of Theorem 1; in cases
(1)-(3) K =S and in cases (4)-(5) K=3S; in case (6) each left and each
right ideal of S is dense in S.

Proor. We showed in the proof of Lemma 1 that a&A4 implies
that a? is a minimal right ideal, i.e. an m.r.i., and that b& B implies
that b2 is a minimal left ideal, i.e. an m.Li.; it is known [6, Lemma 19]
that the minimal ideal K is the union of the m.r.i. and also the union
of the m.Li.; thus it follows that K exists in cases (1)—(S) because
either A & or B &. Thus also in (1)-(3) we have K =S because
either 4 =S or B=S.

Consider (4) where S=A4\U(CND). By Lemma 3 C and D are
each closed in S and so CN\D is closed in S. Since S is connected,
A # & must contain at least two poiuts. Thus K contains these by
the above Lemma 19 of [6]; K is known to be connected and so it is
not degenerate connected. Hence by definition of widely connected
we see K =35 in case (4) and similarly in case (5).

In case (6) S=D=C. For d&S we have SDOSd and for d&D by
(1*) we have SdDS. Hence Sd=35. Let for example L be a left ideal
of S and dEL. Then SACSLCLCS. Thus from Sd=S we have
L=3. Similarly for right ideals of S.

LEMMA 7. If S is a semigroup then A, B, C and D are all semigroups.

ProOF. Let ¢, ¢/EC. Then ¢SDS, by (1*), and so ¢'cSD'SDS.
Therefore, by (1*), ¢/c&EC and so C is a semigroup as similarly is D.
Let @, a’EA. Then aS=aa, by (1*), and so a’aS=a’aa which is a
point. Therefore a’a €4 by (1*) and so 4 is a semigroup as similarly
is B.

LEMMA 8. Let S be a semigroup. Then for each ¢&C there exist
c”, " ES such that ce’ =c and cc'’ =e'’; and for dED there exist d’ and
&' &S such that ¢’'d=d and d'd=e'.

ProoF. For ¢&C by (1*) we have ¢S SDc. Therefore there exists
¢ €S such that ce’’ =c. Also ¢cS§DSDe'" and so there exists ¢’ES
such that ¢¢’’ =¢'’. Similarly for dED there exist d’ and ¢’ as desired.

LEMMA 9. Let S be a semigroup and f&CND. Then there exists e S
such that fe=f=ef, i.e. e is a unit for f.

Proor. By Lemma 8 there exist ¢/, ¢/, f' and f” such that ¢/f=
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f=fe'" and f'’f=¢’ and ff""=e". Then e'¢’’' =f'fe’’ =f'f=¢' and e'e'’ =
eff' =ff"" =¢€'’. Hence ¢’ =¢'’, =e say. Thus fe=e=ef.

THEOREM 3. Let S be a widely connected semigroup, E be the set of
idempotents of S and F={f|fES and there exist e, ', f €T such that
fe=f=ef, f'/f=e=ff"}. Then CN\D, =F, is a semigroup and either
S?CE, S=F, or S=F\JE’ where each aESE' is such that aa S E.

ProoF. In cases (1)—(3) of Theorem 1 we see by Corollary 1.1 that
S?CE. By Lemmas 8 and 9 we have that F=CND. By the proof of
Lemma 7 we see that CND is a semigroup. In case (6) S=F. In
cases (4)—(5) we have that S=F\UE’ by Lemma 6.

We note that a widely connected set S is a hereditarily indecom-
posable connected set and also S is closed in itself. Thus the results
above and also Theorem 1 of [7] hold for a nonbicompact, hereditar-
ily indecomposable continuum which is a topological semigroup S;
here S can be a topological group.

In the following S is a biconnected topological semigroup with a
dispersion point d. Since Sa is a connected subset of the biconnected
set .S, it is biconnected and has dispersion point 4 if it is nondegener-
ate. To obtain the results below we put on conditions limiting to a
point the subset of .S which maps into d by Sa, where a~d.

LeMMA 10. Let S be a biconnected semigroup with dispersion point d;
furthermore, for a €S and a%d, let there exist ZC .S such that Za=d;
also, if Za=d, let then Z be a point. Then either aa is a right zero of S
or d is a left zero for a.

Proor. Consider the case where aa is not a right zero of S. Then,
by Lemma 6, Sa is not a point. Therefore it follows from the defini-
tion of biconnected that Sa is biconnected and has dispersion point
d. Hence Sa—d=S{\US{, where S/ and S/ are mutually separate.
If &S! CSa, (i=1, 2), then there exists s&€.S such that sa=s'. Let
Sia=S!. Then, for Za=d of the hypothesis, Se —d=Sa—Za=S:a
USse separate. If so&.S, and it is the sequential limit of s;&.S;,
(j=1, 2, - - ), then sea is the sequential limit of the s;a. We con-
clude that S—Z=.S5,US,, where .S; and S, are mutually separate.
By hypothesis Z is a point and so Z =d, since a biconnected set can
have but one dispersion point. Thus Za=da=a and so d is a left
zero for a.

LEMMA 11. Let S and Z be as in Lemma 10 and
G={glges—d dg=dl.
Then G\Jd 1s closed in S, S=(G\Jd)\UB and GN\B=.
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Proor. Let g;&G, (=1, 2, - - - ), have sequential limit go. Then
dg;=d has sequential limit dgo and so go&G\Jd. Therefore G\Jd is
closed in S.

Suppose that gEGNB. Then Sg=gg=dg=d by (1*) and hypothe-
sis. For Z=d\Ug, Zg=d and Z is not a point. Hence GN\B = .

Let H={h|hES—d, d=hd}. Then by proofs similar to those of
Lemma 10 and Lemma 11 we have without difficulty:

THEOREM 4. Let S be a biconnected semigroup with dispersion point d.
Let x&€S—d and Z, Z'CS exist such that Za=d=aZ'; further, if
Zx=d, then Z is a point and, if xZ' =d, then Z' is a point. Then one
of the following must be true: (1) S=A4=B; (2) S=4=GJd; 3) S=B
=HUd; (4) S=HUd=(GJd)UB where B=Z; (5) S=G\Jd
=(HUA)\JA where A= ; or (6) S=H\Jd=G\Jd. Thus, for every
SES, ss is a zero of S, or d is either a left zero, a right zero or a zero of
S—d.

The biconnected semigroup we give in [7] is an example of case
(6), d being a zero for S.
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