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We have shown in [7] that under certain assumptions both widely

connected and biconnected topological semigroups exist. As point

sets both of these sets have peculiar properties including the fact

that the only continua either can contain are degenerate connected

sets; this gives contrast to the well known result by Pontrjagin that

a bicompact connected topological group contains an arc; also R. J.

Koch has shown recently [2 ] that a bicompact connected topological

semigroup with unit also contains an arc; our semigroups here are

obviously not bicompact. Below we develop some further properties

of these as semigroups.

We assume that we have a topology under which S is a nondegen-

erate connected semigroup; this involves a continuous associative

multiplication which is a mapping m: SXS—>S. We recall from [8,

p. 254] that S is widely connected if and only if every nondegenerate

connected subset has the same closure that 5 has. We need below

that m he extendable to S, the closure of S, and that 5 be a compact

perfectly separable space: we will also take it as a Hausdorff one.

Our first results deal with the properties that m must have if 5 is a

widely connected semigroup and our last if 5 is a biconnected semi-

group with dispersion point, recalling from [l, p. 214] that 5 is

biconnected if and only if it is not the union of two disjoint nondegen-

erate connected subsets; and d is a dispersion point of 5 if and only

if S — d is totally disconnected.

We write 0 for the null set. We mean by M — N the set

\p\pEM but p nonEN]. For basic definitions see Moore in [3]

and Wallace in [4]. We recall, for A, BES, then AB = m(AXB)

= \m(a,b)\aEA,bEB} = \ab\aEA, bEB}. If xESand x2 = x, then
x is an idempotent of 5 and E= [x\x2 = x, xES}. If 0¿¿NES, then

N is a left ideal if SNEN; N is a right ideal if NSEN; N is an ideal
if it is both a left and a right ideal. Below by A, B, C and D we

always mean the following:

A = \ a | aS is a point, aG5¡,      B = {b | Sb is a point, b E S]

C = {c\ cS~)S, cES]      and     D = {d | Sd D S, d E S].
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Lemma 1. If S is a semigroup and if aS and Sb are both points for

some a, b(E.S, then Sb = aS = a2 = b2 and aS is a minimal ideal of S.

Proof. If aS is a point for some a G S, then aS = aa = a2 and

similarly Sb = b2. Also SSbC.Sb = b2 and so Sb is a left ideal and obvi-
ously minimal. Similarly aS is a minimal right ideal. Since it is a

known and easily proved property that each left and right ideal inter-

sect, we see that aS = Sb=a2 and so c2 is a minimal ideal of 5.

Lemma 2. If S is a topological semigroup and A¥l0¥lB, then A and

B are each closed in S and SB=AS = a2Q.S.

Proof. Since A^0^B, from (1*) we see that there exist aÇ^A

and &G-B satisfying Lemma 1 and so aS = Sb = a2 and aS is a minimal

ideal of S. If a'G-4, since each left and right ideal intersect, we see

that a'S = aS. Thus it follows that AS = SB = a2. It easily follows that

A, and similarly B, is closed for under the supposition that it is not,

one gets a contradiction with the fact that 777 : SXS-^S is a continuous

mapping.

Lemma 3. If S is a topological semigroup, then C and D are each

closed in S.

Proof. It easily follows that C, and similarly that 77, is closed for

under the supposition that there exists CoG-S — C and Co is a limit

point of C we have that c0S~i)S is false by definition (1*) of C. For

a fixed s(E.S there exist CiGC for (7= 1, 2, ••• ) and c' G S such that

CiC'i =s, because from (1*) CiS^)S. Then, since S is compact and per-

fectly separable, there exists Co'G-S' such that c0Xco' is a sequential

limit of a subsequence of U(c¿Xc/); it follows that c0Co' =s and so

CoSZ)S, which is a contradiction.

Lemma 4. If S isa widely connected semigroup, then, for each a,b(E.S,

aS is either a point or aSZ)S; similarly Sb is either a point or SbZi>S.

Proof. Since S is connected, it is known and easy to prove that

aS and Sb are both connected. By definition of widely connected

then aS is either a point, i.e. a degenerate connected set, or 5 and

aS have the same closure, i.e. (closure of aS) =SZi>S. It follows with-

out difficulty from the fact that 777: SXS—^S is a continuous mapping

that (closure of aS)=aS. Thus either aS is a point or aSZ)S and

similarly either Sb is a point or Sbi^S.

Lemma 5. If S is a widely connected semigroup and Atí0¥:B, then

C=0=D.
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Proof. By Lemmas 2 and 3, A and C are each closed ; by Lemma 4,

S = .4WCand so 5 cannot be connected unless C= 0. Similarly for D.

Theorem 1. If S is a widely connected semigroup then one of the

following cases must be true: (1) S = A =B,i.e. S = Ai^B; (2) S = A=D,

i.e. S = Ar\D; (3) S = B = C, i.e. S = BC\C; (4) S = A\JC = D where
Aj¿0, i.e. S = A\J(C(~\D); (5) S = B\JD = C where B^0, i.e.
S = B\J(Ci\D);or (6) S=C = D, i.e. S=CC\D.

Proof. By Lemma 4 for a E S either aEA or aEC. Thus S = A or

S=C or S = A\JC. Similarly for bES either bEB or bED. Thus
S = B or S = D or S = BUD. Thus for S = A we can have (1) S = B

or (2) S = D, but by Lemma 5 we cannot have S = Ä9i0 and

S = BVJD where B*09&D. Also for S=Cwe can have (3) S = B or

(6) S = D or (5) S = B\JD. For 5 = 4UCwe cannot have ,4 5¿0?¿P

and C^j^í and so cannot have S = B by Lemma 5; we can have (4)

S = D but cannot have S = B^JD unless it is one of the other cases.

Hence we conclude that the Theorem is true.

Corollary 1.1. In cases (1)—(3) of Theorem 1 we have S2EE, where

E is the set of idempotents of S.

Proof. Consider as typical the cases (1) and (2) where S = A. Let

aEA, i.e. aS = a2 by (1*). Let abES2. Then ab = a2; also a(bab)=a2.

Therefore ab = a2 = (ab)2 and so abEE and hence S2EE.

Lemma 6. Let S be a semigroup and aES. Then a2 is a right zero of

S if Sa is a point; also a2 is a right zero of S only if Sa is a point, if

also, for each s ES, there exists some bES such that ba = s.

Proof. Consider the case where Sa is a point. Then Sa = a2. For

each bES there exists s = baES; then (ba)a=a2 = ba2. Hence a2 is a

right zero of S.

Consider the case where a2 is a right zero of S. Then, for bES,

ba2 = a2. Hence Sa=aa, for if 5 E S there exists bES such that ba = s.

Corollary 1.2. If S is a widely connected semigroup, then for every

aES we have a2 is either a zero, a left zero or a right zero of S in cases

(1), (2) or (3) respectively of Theorem 1.

Proof. That a2 is a right zero in case (3) follows at once from

Lemma 6; in case (2) a similar lemma would show that a2 is a left

zero; the combination of these gives that a2 is both a left and a right

zero, i.e. a zero, of S in case (1).

We remark that the widely connected semigroup of which we
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showed the existence in  [7], being a topological group, was case

(6) of Theorem 1 as Lemma 6 shows.

Theorem 2. If S is a widely connected semigroup, then the minimal

ideal K of S always exists in cases (l)-(5) of Theorem 1; in cases

(l)-(3) K = Sand in cases (4)-(5) K = S;in case (6) each left and each

right ideal of S is dense in S.

Proof. We showed in the proof of Lemma 1 that a^A implies

that a2 is a minimal right ideal, i.e. an m.r.i., and that b(E.B implies

that b2 is a minimal left ideal, i.e. an m.l.i. ; it is known [6, Lemma 19]

that the minimal ideal K is the union of the m.r.i. and also the union

of the m.l.i.; thus it follows that K exists in cases (l)-(5) because

either A 9^0 or B¿¿0. Thus also in (l)-(3) we have K = S because

either A=S or 73 = 5.

Consider (4) where S = A]U(CC\D). By Lemma 3 C and D are

each closed in 5 and so CC\D is closed in S. Since 5 is connected,

A¿¿0 must contain at least two points. Thus K contains these by

the above Lemma 19 of [ó]; K is known to be connected and so it is

not degenerate connected. Hence by definition of widely connected

we see K = S in case (4) and similarly in case (5).

In case (6) S = D = C. For ¿G5 we have S~Z)Sd and for dÇ^D by

(1*) we have SdZi)S. Hence Sd = S. Let for example 7 be a left ideal

of S and ¿G7. Then SdCZSLCLCZS. Thus from Sd = S we have
L = S. Similarly for right ideals of S.

Lemma 7. If S is a semigroup then A, B, Cand D are all semigroups.

Proof. Let c, c'EC. Then cSDS, by (1*), and so c'cSZ)c'SDS.

Therefore, by (1*), c'cGG and so C is a semigroup as similarly is D.

Let a, a'(E.A. Then aS = aa, by (1*), and so a'aS = a'aa which is a

point. Therefore a'aÇiA by (1*) and so A is a semigroup as similarly

is B.

Lemma 8. Let S be a semigroup. Then for each c(E.C there exist

c", e"OzS such that ce" =c and cc" =e"; and for dÇ.D there exist d' and

e'G'S such that e'd = d and d'd = e'.

Proof. For cÇiC by (1*) we have cS^)SZ)c. Therefore there exists

e"G5 such that ce"=c. Also cSZ)SZ)e" and so there exists c"Çz.S

such that cc" =e". Similarly for d(E.D there exist d' and e' as desired.

Lemma 9. Let S be a semigroup andfÇiCC\D. Then there exists eGS

such that fe=f = ef, i.e. e is a unit for f.

Proof. By Lemma 8 there exist e', e", f and /" such that e'f=



i960] WIDELY CONNECTED AND BICONNECTED SEMIGROUPS 253

f=fe" and f'f=e' and ff"=e". Then e'e" =f'fe" =f'f = e' and e'e" =
e'ff"=ff"=e". Hence e'=e", =e say. Thus fe = e = ef.

Theorem 3. Let S be a widely connected semigroup, E be the set of

idempotents of S and F= \f\fES and there exist e, /', f'ES such that

fe=f=ef, f'f = e=ff"\. Then CC\D, = F, is a semigroup and either
S2EE, S = F, or S = FVJE' where each aEE' is such that aaEE.

Proof. In cases (l)-(3) of Theorem 1 we see by Corollary 1.1 that

52CP. By Lemmas 8 and 9 we have that F= CC\D. By the proof of

Lemma 7 we see that CC\D is a semigroup. In case (6) S=F. In

cases (4)-(5) we have that S=F\JE' by Lemma 6.

We note that a widely connected set S is a hereditarily indecom-

posable connected set and also 5 is closed in itself. Thus the results

above and also Theorem 1 of [7] hold for a nonbicompact, hereditar-

ily indecomposable continuum which is a topological semigroup S;

here S can be a topological group.

In the following 5 is a biconnected topological semigroup with a

dispersion point d. Since Sa is a connected subset of the biconnected

set S, it is biconnected and has dispersion point d if it is nondegener-

ate. To obtain the results below we put on conditions limiting to a

point the subset of S which maps into d by Sa, where a¿¿d.

Lemma 10. Let S be a biconnected semigroup with dispersion point d;

furthermore, for aES and a^d, let there exist ZES such that Za = d;

also, if Za = d, let then Z be a point. Then either aa is a right zero of S

or d is a left zero for a.

Proof. Consider the case where aa is not a right zero of S. Then,

by Lemma 6, Sa is not a point. Therefore it follows from the defini-

tion of biconnected that Sa is biconnected and has dispersion point

d. Hence Sa — d = Si\JSi, where Si and Sí are mutually separate.

If s'ESi ESa, (i=l, 2), then there exists sES such that sa = s'. Let

Sia = Si. Then, for Za = d of the hypothesis, Sa — d = Sa — Za = Sia

\JS2a separate. If SoES2 and it is the sequential limit of SjESi,

(j = l, 2, • ■ • ), then s0a is the sequential limit of the s¡a. We con-

clude that S — Z = SiUS2, where Si and S2 are mutually separate.

By hypothesis Z is a point and so Z = d, since a biconnected set can

have but one dispersion point. Thus Za = da = a and so d is a left

zero for a.

Lemma 11. Let S and Z be as in Lemma 10 and

G = [g\ g E S - d, dg = d].

Then GKJd is closed in S, S=(GVJd)\JB and GC\B = 0.
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Proof. Let gj<EG, (j=l, 2, ■ ■ ■), have sequential limit go. Then

dgj = d has sequential limit dg0 and so goGGVJd. Therefore GKJd is

closed in 5.

Suppose that gÇzGr\B. Then Sg = gg = dg = d by (1*) and hypothe-

sis. For Z = d\Jg, Zg = d and Z is not a point. Hence GC\B = 0.

Let H={h\h(ES — d, d = hd}. Then by proofs similar to those of

Lemma 10 and Lemma 11 we have without difficulty:

Theorem 4. Let S be a biconnected semigroup with dispersion point d.

Let x(ES — d and Z, Z'CZS exist such that Za = d = aZ'; further, if

Zx = d, then Z is a point and, if xZ' =d, then Z' is a point. Then one

of the following must be true: (I) S = A=B; (2) S = A=G*Ud; (3) S = B
= H\Jd; (4) S = H\Jd=(G\Jd)\JB where B^0; (5) S = GVJd
= (H\Jd)\JA where A^0; or (6) S = IIVJd = GKJd. Thus, for every
s G S, ss is a zero of S, or d is either a left zero, a right zero or a zero of

S-d.

The biconnected semigroup we give in [7] is an example of case

(6), d being a zero for S.
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