
THE ISOPERIMETRIC PROBLEM OF THE CONVEX
HULL OF A CLOSED SPACE CURVE

Z. A. MELZAK1

I. Let C be a closed rectifiable curve or an open rectifiable arc in

the 77-dimensional Euclidean space En. Let C, V(C) and L(C) de-

note respectively the closed convex hull of C, the volume of C and

the length of C. Let (c, n), or (0, n), stand for the problem of maxi-

mizing V(C), subject to the condition L(C)=const, for a closed

curve C, or an open arc C. It is clear that the solution is to be given

only up to a similarity and a rigid motion, possibly followed by a

reflexion.

On closer examination it turns out that there are four classes of

problems: (c, 2n), (0, 2t7), (0, 2n + l) and (c, 2n + l). Under certain

restrictive assumptions (c, 2n) has been solved by Schoenberg [l].

Generalizing the Fourier-series isoperimetric method of Hurwitz [2],

he proves that the solution C of (c, 2n) is given parametrically by

1 1
sin /,        Xi(t) = — sin 2l,        xb(t) = — sin 3/, • • •

z o

1 1
cos t,        xi(t) = — cos 21,        xe(l) = — cos 31, ■ ■ ■

2 3

with 0 — t<2ir. The corresponding isoperimetric inequality is

V(C) = [(27rw)"(2w)!77!]-172"(C).

On the basis of the analogy between (1) and the isoperimetric

problems of the circle and the semicircle it is likely that the solution

C of (0, 2tî) is an open arc, also given by (1), but with O^t^ir. The

isoperimetric inequality would then be

V(Q g 2»-1[(7r«)"(277)!77!]-172"(C).

The case (0, 3) has been treated by Egervary [3], who proves

that here the solution is one turn of the circular helix

*(/) = sin t,        y(i) = cos t,        z(t) = 2'll2t,

and the isoperimetric inequality is

V(C) = (UJVty-WiC).
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Xi(t) =

Xi(t)  =
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Egervary's method carries over to the general case (0, 2ra + l); the

solution is then a higher-dimensional analog of a turn of a circular

helix.

The last class of problems, (c, 2n + l), does not seem to have been

treated so far, although (c, 3) was proposed by Bonnesen and Fen-

chel in 1934, [4, p. 111]. Here (c, 3) is considered and a partial solu-

tion is given.

II. From now on a curve C, unless otherwise defined, will mean a

closed rectifiable curve in E3. C is said to be smooth if along C the

Cartesian coordinates x(s), y(s) and z(s) are continuously differenti-

able functions of the arc-length 5. A curve C belongs to the class

31 if
(2) C is smooth,

(3) C has two orthogonal planes of symmetry Pi and P2,

(4) C projects on Pi, and on P2, as a convex open arc, and on P3

(a plane orthogonal to Pi and P2) as a closed convex plane curve.

Geometrically interpreted, these conditions state that C is the

intersection of certain two perpendicular smooth convex symmetric

cylinders. We can now select a Cartesian coordinate system so that

(5)

and

(6)

¡e(0) > 0,       y(0) = 0,        z(0) = 0,

x'(0) = 0,       z'(0) = 0,        z(s) ^ 0,

x'(s) ^ 0, y'(s) ^ 0,        z'(s) ^ 0,

0 ;g s ^ Z/4,        L = L(C).

Here and elsewhere accent denotes differentiation with respect to the

arc-length s. The symmetry condition implies that C cuts Pi and P2

at right angles:

*'(0) = s'(0) = 0, y'(0) = 1;

x'(L/2) = z'(Z/2) = 0,       /(Z/2) = - 1;

*'(Z/4) = - 1, y'(L/\) = z'(Z/4) = 0;

x'(3Z/4) = 1, y'(3Z/4) = z'(3Z/4) = 0.

Lemma 1. If CE 91 then

(8) V(C) =   f   xyz'ds.
J o

By the conditions (2)-(4) a plane z = z0, Ogz0^z(Z/4), cuts C in
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four vertices of a rectangle; let K be the union of all such rectangles.

Then K is a convex solid containing C and through any point of the

boundary of K there passes a straight segment with end-points on C.

Therefore C = K. Let pi and p2 be two points on C, both in the same

octant, and let ZZi and H2 be the horizontal quarter-planes through

them. That is, Hi is the part of the horizontal plane through pi in

the octant of pi. Taking now the largest parallelepiped between Hi

and H2 in C as the volume element, and performing the usual opera-

tions of setting up a definite integral, we obtain (8). It will be noticed

that in each of the four octants of C either x, y and z' are all non-

negative, or two of them are nonpositive, so that the integrand in

(8) is always nonnegative.

Lemma 2. Let

V =  f   xyz'ds,     x'2 + y'2 + z'2 - 1 = 0,      x'(0) = y(0) = z'(0) = 0,
J o

x(0) = x(L), y(0) = y(L), z(0) = z(L).

Then a necessary condition for V to be maximum is that the following

system of differential equations be satisfied :

k2x" = — xy2,       k2y" = — yx2,       kz' = xy,       k a constant.

By the theory of the Lagrange multipliers [S], the above problem

reduces to that of maximizing the single integral

Z =   I    F(s, x, y, z, x', y', z')ds
J o

=   f   [xyz' - \(x'2 + y'2 + z'2 - l)]ds,
J a

where X=X(s) is the multiplier. The Euler-Lagrange equations for J

are

(10) (2\x')' = - yz',        (2\y'Y = - xz',        (xy - 2\z')' = 0.

In view of the assumed initial conditions and transversality, the last

equation yields

(11) xy = 2\z'.

If this is used to eliminate z' from (10), one obtains

2\(2\x')' = - xy2,        2\(2\y')' = - yx2.

Multiplying the first equation by x', the second one by y', and adding
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the results, we have

[4X V2 + y'2) + xY]' = 0,

and by the initial conditions

12) 4X2(x'2 + y'2) + x2y2 = k1,        ka constant.

Comparing (11), (12) and the arc-length condition x'2+y'2+3/2 —1

= 0, we get &2 = 4A2 and the lemma follows.

Lemma 3. The necessary condition of Lemma 2 is also sufficient.

Without loss of generality let X = &/2>0. We form first the Weier-

strass E-iunction and the Legendre quadratic form Í7 for the integral

7 in (9). These are defined as follows, [S]:

E(s, x, y, z, x', y', z', p, q, r) = F(s, x, y, z, p, q, r) - F(s, X, y, z, x', y', z')

- (p - x')FX'(s, x, y, z, x', y', z')

- (q - y')Fy,(s, x, y, z, x', y', z')

- (r - z')Fz,(s, x, y, z, x', y', z'),

ó

Qfêi, h, ïi) = S Fx'fp, x, y, 2, *', y', *0Si&,
Í.J-1

where Xi=x, Xi = y, x3 = z. Performing the calculations, we have

E = - \[(p - x')2 +(q- y')2 +(r- z')2\,

0= - 2\(ii + d + (i).

Thus two conditions for a relative strong maximum are satisfied.

The remaining two conditions are also satisfied, and by the suffi-

ciency theorem for Bolza's problem, [5, p. 235], the lemma follows.

III. In this section we shall investigate the differential equations

describing C. By a change of scale it will be assumed that k = l, and

the equations become x" = — xy2, y" = —yx2, z'=xy.

Lemma 4. The differential system

(13) *" = - xy2,        y" = - yx2,

possesses a unique solution x(s), y(s), which is analytic for all real s,

for any initial conditions x(0) =a0, x'(0) =«i, y(0) =b0, y'(0) =&i.

As in (12), we show that there exists a first integral

(14) x'2 + y'2 + x2y2 = a\ + b\ + afâ = c2. c> 0.
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This implies at once the following estimates:

(15) \x'\úc,        I/I  ác,

and therefore also

(16) | x(s) |  é cu + c\ s j ,        | y(s) |   g Co + c | s \ ,

where c0 = max (|flo|, \bo\). We show first that if x(s0) and y(s0) are

finite for some So, then x(s) and y(s) are analytic for \s — s0\

<min (1, 1/c, l/|x(so)|, l/|y(io)|). Assume that

CO CO

(17) x(s) = 2~2<*n(s - si)n,       y(s) = }Z ßn(s - So)";
0 0

substituting into (13) and comparing coefficients, we have

(n + 2)(n + 1K+2 = -     2Z    <*ißjßk,

(is) "tr
(n + 2)(n + l)ßn+2 = -     2Z    ß#Xjotk, n ^ 0.

t i i í M

Let P = max (1, c, \ao\, \ßo\ ), so that in view of (15)

(19) | a;|   ^ R'+\        \ßj\   £R»\ j -0,1.

Assume that (19) holds for jgra + 1. Then by (18)

(n + 2)(n + 1) | an+2 \   ú R"+3     E    1 = — (n + 2)(n + 1)R«+3,
i+j+k=n 2

and similar estimate holds for |/Sn+2|. It follows that (19) holds for

j = n + 2 and, by induction on n, for all/. Therefore the power series

(17) converge for \s — s0\ <1/P = min (1, 1/c, l/]x(s0)|, l/|y(so)|),

which was the assertion.

In particular, by putting s0 = 0 it follows that x(s) and y(s) are

analytic for 0 5Í5<min (1, 1/c, l/|oo|, l/[&o|)=Si. Now we repeat

the same procedure with s¡ — ej in place of 5o. Here ft, and later e„, is a

small positive constant. The result is that x(s) and y(s) remain analytic

for Si — eit=s<s2, where s2 = min (1, 1/c, 1/|x(si — ei)|, l/[ y(si — ei)| ).

By (16) \x(si — ei)\ ^Co+csi and | y(si — ei) | f^Co + csi, so that s2

Sïmin (1, 1/c, l/(co+C5i)). If this process is continued, we obtain a

sequence of analytic continuation intervals: 0^s<Si, Si — ei^s

<s2, ■ • • , sn — e„^s<sn+i, where by (16)

(20) Sn+i è min (1, 1/c, l/(c„ + csn)) > 0.

Thus in n steps x(s) and y(s) are shown to be analytic for s in the
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interval 0^s= ^2" Sj— ^" t¡. The estimate (20) implies at once that

y^? sj diverges with n. Since the sum 22" e,- can be made uniformly

small, it follows that x(s) and y(s) are analytic for s^O. Their ana-

lyticity for s^O can be shown in the same way. Since the constructed

analytic solutions are clearly unique, the lemma is proved.

For our purposes we shall consider only the initial conditions of the

form x(0) =a>0, x'(0) =y(0) =0, y'(0) =ô>0. The graph of the solu-

tion x(s), y(s) with these initial data, which exists and is unique by

Lemma 4, will be denoted by D(a, b). A subgraph corresponding to

0^5^si, will be denoted by D(a, b, si). In the xy-plane of the graph

let Q be the first quadrant and B that part of the diagonal x =y which

is in Q. DQ(a, b, si) is defined by: (1) DQ(a, b, Si)C(?, (2) if D(a, b, si)
C.Q then D(a, b, s2) C DQ(a, b, si).

Lemma 5. If y' — 0 along D(a, b, s)C<2, then along D(a, b, s)

(21) y'2 + a2y2 - b2 ^ 0,

(22) y(s) = b/a sin as,

and D(a, b, s) itself is a convex arc.

Since y'(0) =&>0, y' = 0 initially for small 5 along any D(a, b, Si).

By (13) x" <0 inside Q and x'(0)=0, so that x(s) is a decreasing

function in Q: x(s) ^x(0) =a. Now by (13) y"——a2y. By the hy-

pothesis y'^0 so that y"y'^ —a2yy'; the last relation can be written

as (y'2+a2y2 — b2)' = 0 and (21) follows by integrating. (22) is a simple

consequence of (21) and the assumption y'^0, and is obtainable

similarly. To prove the convexity of D (a, b, s) we observe that the

second derivative d2y/dx2 = (x'y" — x"y')/xn cannot change its sign

along D(a, b, s) because on the interior of D(a, b, s) x', x" and y'

are negative while y' â 0.

If DQ(a, b, Si) cuts 73, let sm be the smallest value of 5 for which

this happens, and let y be the corresponding angle at sm. To fix y

uniquely we take along Dq the direction of increasing s and along 73

the direction away from the origin, counting the angle positive.

Lemma 6. If a>0 is fixed and b=a2, then DQ(a, b, Si) cuts B and

(23) 7 = lib) > t/4,

(24) lim y(b) = x/4.

If b='a2/A, then either D(i(a, b, Si) does not intersect B, or if it does,

(25) y(b) > x/2.
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Let a>0 be fixed and consider D=DQ(a, b, Si). If y' vanishes along

77, say for s = s2, then by (21) y(si)'=b/a. Therefore, if b = a2, then

y(si)^a while x(s2) ^x(O) =a, so that D must cut 73 for some s3,

0<S3^s2. Suppose now that 77 lies below B and y'>0 along D. This

may occur only if Si= ». However, by putting s=ir/2a in (22) we

have now y(ir/2a)—b/a and if b—a2 this leads to a contradiction:

D cannot lie below B. This establishes the first part of the lemma;

(23) and (24) are obvious conclusions since x and y' are steadily

decreasing.

From the first integral (14) we have x'2+y'2+x2y2 = b2 for all s.

Therefore D cannot pass in Q above the hyperbola xy = b, and the

last conclusion of the lemma follows now from the geometry of the

situation.

Lemma 7. If y=y(b) is defined at b = bi and y(bi)^ir, then y(b) is

also defined over some interval (b\ — e, bi+e), e>0. If y(b) is defined

for all be(bi, bi) and y(b) <m<ir, then y(bi) and y(bi) exist and y(b) is

continuous over [bi, b2].

To bring out the dependence on the initial conditions, we shall

write, where necessary, x(a, b, s) and y(a, b, s) for x(s) and y(s). The

proof of the lemma follows simply from the following three observa-

tions. In the first place, to fix the value of s at which DQ(a, b, Si) cuts

B, we have the equation x(a, b, s) =y(a, b, s). By the implicit func-

tion theorem s = s(b) is then a continuous solution unless the Jacob-

ian condition fails, i.e., unless x'(a, b, s)=y'(a, b, s), that is, unless

Dq is tangent to B and y =ir. In the second place, by the fundamental

theorems for differential equations [6, Chapter 1 ] x(a, b, s), x'(a, b, s),

y(a, b, s) and y'(a, b, s) are continuous in a, b and s jointly. Finally,

y(b) = arc tan {[y'(a, b, s(b)) - x'(a, b, s(b))]

+ [y'(a,b,s(b)) + x'(a,b,s(b))]},

so that 7(e) depends continuously on x'(a, b, s(b)) and y'(a, b, s(b)),

and so on b.

Lemma 8. For each a>0 there exists a value b = b(a), such that

DQ(a, b(a), si) cuts B and y[b(a)]=ir/2.

Let a>0 be fixed. By Lemma 6, y(b) is defined for all b — a2 and

7(17) <7r/4 + l/10 for 717 large enough. Consider now the interval

7= [a2/4, M]. If 7(6) is defined over the whole of 7, then by Lemmas

6 and 7 7(6) =7r/2 for some b, a2/1<b<M. If y(b) is not defined for

all ¿G7, there is a value bi, a2/4<bi<M, such that y(b) is defined

for all èG(£>i, 717], but not for all be[bi — e, bi] for any €>0. Assume
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that y(b) <-w/2 for be(bi, M]. Then by Lemma 7 y(bi) exists and

y(b) is continuous over [bi, M\. If y(bi) =ir/2, the conclusion follows,

suppose therefore that y(bi) <ir/2, so that y(b)<ir/2 for be[bi, M].

Now Lemma 7 implies that y(b) can be continuously extended to a

larger interval [&i —e, MJ, «>0, which is a contradiction. Therefore

y(b) ^7r/2 for some be(bi, M] and the conclusion follows as before.

Lemma 9. D(a, b(a)) is a closed convex curve with four axes of sym-

metry: x = 0, y = 0, y= ±x.

By Lemma 8 there is an arc D=D(a, b(a), si) which starts orthog-

onally to the x-axis and terminates orthogonally to B at B. It is

clear that y' >0 along D so that by Lemma 5 D is a convex arc. Since

the system (13) is formally invariant under the transformations

x—>y, y—>x, it follows that the continuation of D to the region in <£

above B is the reflexion Z>i of D in B. LetD2 = DVJDi. The system (13)

is also invariant under the transformations x—->y, y—> — x; this implies,

as before, that the continuation D% of D2 to the second quadrant is

the reflexion of D2 in the y-axis. Continuing in this way, we show that

D(a, b(a)) must close up and be a convex curve with the required

symmetries.

In view of the Lemmas 1-9 we have:

Theorem 1. Let C£3i and let L(C) be fixed. Then V(C) is maximm

if and only if C is similar to a periodic solution of the system

ft Off Of
x   = — xy,        y    = — yx,        z  = xy.

IV. It will be indicated now how some restrictions on C in Theorem

1 can be relaxed. Instead of assuming that C is smooth it suffices to

assume piecewise smoothness. The full condition follows: at the four

points where C cuts its symmetry planes by transversality, elsewhere

by the Weierstrass-Erdmann corner condition, [5]. We define now

the class 23 of bicylindric curves, which is wider than St. Let Z be a

cylinder whose directrix is a simple plane open arc lying on one side

of the straight line L through its end-points. Let Pi(Z) be the plane

through L parallel to the direction of Z, and let P2(Z) be the plane

parallel to Pi(Z) which supports Z from the other side. A rectifiable

curve is bicylindric if C = ZiC\Z2, where Zi and Z2 are two cylinders

as described above, and Pi(Zi) =P2(Z2), P2(Zi)=Pi(Z2). A curve C

in 23 is called deficient if for some other curve Ci in 93

V(Ci)L3(C) > V(C)L\Ci).

It is clear that in solving (c, 3) for curves in 23 it suffices to consider
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nondeficient curves only. However, by simple symmetrization tech-

niques, similar to those of Steiner [7], it may be shown that CG33

is deficient unless CG SI- Furthermore, it appears likely that a single

condition on C in Theorem 1 would suffice: no plane cuts C in more

than four points.

V. Some problems related to (c, 3) will now be listed. Is Theorem

1 valid under minimal restrictions on C (rectifiability, being a closed

curve)? Is the periodic solution of Theorem 1 unique? Next, (c, 3)

may be proposed with certain restrictions: C lies on a sphere, or on

a circular cylinder, or C is topologically a prescribed type of knot.

Further problems may be mentioned in connection with the system

(13). Can the method used here be applied to show that some other

plane autonomous systems, of order two or more, have periodic solu-

tions? Are there some other Hamiltonian systems of the form

fi(x, x', • • • , y, y', • ■ • ) =0, i= 1, 2, which are "projections" of sys-

tems of the form gi(x, x', • ■ ■ , y, y', • • ■ , z, z', ■ ■ ■ )=0, 7 = 1, 2, 3

in the same way in which (13) is "projection" of (10)? If so, when does

the "original" system gi = 0, 7 = 1, 2, 3, form the Euler-Lagrange

equations of a variational problem in which a simple quantity associ-

ated with a closed space curve, as here the volume of the convex hull,

is to be maximized?

Is there a simple procedure to calculate with arbitrary accuracy

the isoperimetric constant of (c, 3) through Theorem 1?

VI. (c, 3) was suggested to the author by Professor I. J. Schoen-

berg, of the University of Pennsylvania, who also supplied most of

the information in §1. Professor B. A. Rattray, of McGill University,

made valuable suggestions in connection with Lemmas 6-8. The

Editor has contributed suggestions for general improvement.

The work reported upon was started at the Massachusetts Insti-

tute of Technology in Summer 1956 with the support of the Air Force

Office of Scientific Research, and continued in 1957 at the University

of Michigan on a Research Associateship of the Office of Naval Re-

search.

The help of these persons and institutions is gratefully acknowl-

edged.
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EXTENDING DIFFEOMORPHISMS

RICHARD S. PALAIS

In [l, Theorem 5.5], the author proved the following fact. Let M

be a differentiable manifold, pEM, and / a diffeomorphism of a

neighborhood of p into M. If M is orientable assume in addition that

/ is orientation preserving. Then there exists a diffeomorphism of M

onto itself which agrees with/ in a neighborhood of p. In this paper

we shall answer affirmatively a question raised by A. M. Gleason;

namely whether the 0-cell p can be replaced by a differentiable &-cell.

It turns out that this extension follows rather easily from the special

case. The author understands that the theorem has been proved in-

dependently by J. Cerf in his thesis (not yet published). The author

would like to thank Dr. S. Smale for several suggestions utilized in

this paper.

1. Notation. M will denote an w-dimensional differentiable ( = C°°)

manifold. For t=(h, • • • , tk)ERk we write ||/||2 = YH-iñ- We put

B* = {tERk\ \\t\\ úr] and È) for the interior of B* in Rk. We regard

PÍ as a subset of B*T+l by (h, ■ • • , tk)->(h, ■ ■ ■ , tk, 0 ■ ■ ■ 0). By a

differentiable k-cell in M we mean a one-to-one map </>: B\-+M such

that for each tEB\ there is a neighborhood U of t in Rk and a non-

singular differentiable map /: £/—>M such that / and <f> agree on

Ur\B\. It follows from well-known extension theorems that if e>0

is sufficiently small then <f> can be extended to a one-to-one non-

singular differentiable map of B\+t into M. We will write |</>| for the

image of <f>. We note that a differentiable «-cell $ in M determines a

coordinate system in \<b\, and hence an orientation of M if M is

orientable.

2. Extending a &-cell to an «-cell. The theorem of this section ex-

Received by the editors June 3, 1959.


