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EXTENDING DIFFEOMORPHISMS
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In [l, Theorem 5.5], the author proved the following fact. Let M

be a differentiable manifold, pEM, and / a diffeomorphism of a

neighborhood of p into M. If M is orientable assume in addition that

/ is orientation preserving. Then there exists a diffeomorphism of M

onto itself which agrees with/ in a neighborhood of p. In this paper

we shall answer affirmatively a question raised by A. M. Gleason;

namely whether the 0-cell p can be replaced by a differentiable &-cell.

It turns out that this extension follows rather easily from the special

case. The author understands that the theorem has been proved in-

dependently by J. Cerf in his thesis (not yet published). The author

would like to thank Dr. S. Smale for several suggestions utilized in

this paper.

1. Notation. M will denote an «-dimensional differentiable ( = C°°)

manifold. For t=(tu • • • , th)ERk we write ||¿|¡2 = ¿*-i# We put

Bk = {tERk\ \\t\\ úr) and Bk for the interior of Bk in Rk. We regard

Bk as a subset of Bk+l by (tu ■ ■ ■ , tk)-*(h, • ■ • , h, 0 • ■ ■ 0). By a

differentiable k-cell in M we mean a one-to-one map 4>: B\—*M such

that for each tEB\ there is a neighborhood U of t in Rk and a non-

singular differentiable map /: Í/—>JZ such that / and <f> agree on

UC\B\. It follows from well-known extension theorems that if e>0

is sufficiently small then <f> can be extended to a one-to-one non-

singular differentiable map of Bk+t into M. We will write \<b\ for the

image of <j>. We note that a differentiable «-cell 4> in M determines a

coordinate system in \<¡>\, and hence an orientation of M if M is

orientable.

2. Extending a &-cell to an «-cell. The theorem of this section ex-
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presses what is probably a quite well-known fact. However the author

knows of no reference. The idea of the present proof was suggested by

S. Smale.

Theorem A. If p is a differentiable k-cell in M and U is a neighbor-

hood of \p\ then there exists a differentiable n-cell p in M with |p| Ç U

and p =p\ B\. If k<n and M is orientable we can assume that p defines

either orientation of M.

Proof. Without loss of generality we can assume that U = M and

that 717 is paracompact and hence admits a Riemannian metric which

we now fix. Let p': B¡+t—>M be a one-to-one, nonsingular differ-

entiable extension of p and let 2 be the image of p', a ¿-dimensional

submanifold of M. Let ?,'=p'(B\+t/2) and let N(b) be the part of the

normal bundle to 2 lying over 2' and consisting of vectors of norm

^ S. Since 2' is relatively compact in 2 it follows that E, the restric-

tion of the exponential map of 717 to 7V(ô), is a diffeomorphism of

7V(o) onto a neighborhood of \p\ in 717 if 5 is sufficiently small. By

a change of scale in the metric we can suppose this is so for 5 = 2.

Since 2' is contractible A7(2) is equivalent to the product bundle, i.e.

we can find a diffeomorphism 7 of 2'Xß"_t onto A7(2) which maps

xXB"'* linearly and orthogonally onto the set of vectors of norm less

than or equal to two which are orthogonal to 2' at x. We now define

p:B1-^Mby

P(h,   ■   ■   •  , ln)   =   E(T(Pih,   ■   ■   •   , ti), tk+1,   ■   ■   ■  In)).

It is clear that p can be extended to a diffeomorphism of 73"+i/2—*M.

If tk+i= ■ ■ ■ =tn=0 then T(p(h, • • ■ , ti), 4+i, • • • , /„)=zero vec-

tor at <b(ti, ■ ■ ■ , tk) so p(h, ■ ■ ■ , tn)=p(ti, ■ ■ ■ , ti), i.e. p\B\=p.

The final statement of the theorem is clear, for if p defines one

orientation of 717 then (h, • • • , tn)—>p(tu • ■ ■ , tn-U —tn) defines the

other, and has all the other required properties, q.e.d.

3. Transitivity of diffeomorphisms on ¿-cells.

Theorem B. Let p and p be two differentiable k-cells in 717. If k = n

and M is orientable assume in addition that p and p define the same

orientation of M. Then there exists a diffeomorphism F of M onto itself

such that p = 7 o p.1

1 Recall that the sum of two «-manifolds M, and Mi is defined by taking differ-

entiable «-cells ^i and fo in M, and M2 respectively and identifying Mi — \l/i(Bi) and

Mi — faiBi) along the boundaries of | i^i| and | ^2| in the obvious way. As B. Mazur

has pointed out to us, it is precisely Theorem B which is needed to show that the sum

(to within diffeomorphism) is independent of the choice of \¡/¡ and ^2. Because of

Corollary 1 this extends to the sum of manifolds with boundary.
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Proof. By Theorem A we can assume that k = «. The map</>(i)—>\p(t)

defines a diffeomorphism of <f>(B") onto yp(B") which is orientation

preserving if Mis orientable. By Theorem 5.5 of [l] if e is sufficiently

small and positive we can find a diffeomorphism II of M onto itself

such that yp(i) =H(<p(t)) if tEBn(. Let X be a monotone nonincreasing

differentiable real valued function of one real variable such that

X(i) = 1 if íál andX(t)=0if/^l+S/2, where 5>0 is chosen so small

that <p and \p extend to diffeomorphisms of E"+s into M. For 0 ^ 5 ̂  1

define F] and F2, maps of M—>M by

Flm)) = 4>((1 - s\(\\t\\))t), ||i|| <l+<5,

F,(x) = x, xE <t>(B"i+i),

fIw)) = m - s\(M\))-h),     \\t\\ < i + ô,
2 .n

F,(x) = x, xE yp(Bi+i).

It is clear that F] and F2 are diffeomorphisms of M onto itself and

that Pi-eo ZZo F{-C=F is a diffeomorphism of M onto itself satisfy-

ing yp = F o (p. q.e.d.

In [l] we defined the subgroup Go of the group of all diffeomor-

phisms of M as (roughly) the diffeomorphisms of M which are iso-

topic to the identity through diffeomorphisms each of which leaves

the complement of some compact set fixed. Theorem 5.5 of [l] states

that the diffeomorphism H occurring in the proof of Theorem A can

be taken in G0. Moreover P}_e and Pj_e are also clearly in Go (s—>F\

and s—>F2 give the desired isotopies) hence

Corollary 1. The F of the above theorem can be taken in Go.

Corollary 2. Assume that M is orientable and admits an orientation

reversing diffeomorphism onto itself.2 Then if <p and yp are two differen-

tiable n-cells in M there exists a diffeomorphism F of M onto itself such

that \p = F o <f>.

Proof. By Theorem B we need only consider the case where <j>

and yp define opposite orientations. Let K be an orientation reversing

diffeomorphism of M onto itself. Then K o <p is a differentiable «-cell

in   M  defining   the  same   orientation   as  yp,   so   by   Theorem   B

2 This is a nontrivial restriction. If a manifold M has dimension 2k, dim Hk(M, R)

= 1, and bAm^O for a nonzero element of Hk(M, R) then for any homeomorphism h

of M onto itself it is clear that h*(u/\o>) =o>/\oi so h is orientation preserving. In par-

ticular the complex projective plane is "canonically oriented" in this sense.
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p=H o (K o p) for some diffeomorphism 77 of M onto itself and we

put F = H o K. q.e.d.

4. Extending diffeomorphisms.

Theorem C. Let pbea differentiable k-cell in M and let f be a diffeo-

morphism of a neighborhood of \p\ into M which is assumed to be

orientation preserving if M is orientable. Then there exists a diffeo-

morphism F of M onto itself which agrees with f in a neighborhood of

\p\, and F can even be chosen in Go. If'f is not orientation preserving

then the same conclusion holds (except for F<O.Gi) provided M admits

at least one orientation reversing diffeomorphism onto itself.

Proof. By Theorem A we can assume k = n and we can also assume

that for some e>0, p has been extended to a diffeomorphism of

¿1+2t into the domain of /. Let p'-.B^M be defined by p'(t)

= p((l+e)t). Applying the theorem and corollaries of the preceding

section we see that we can find a diffeomorphism F of M onto itself

such that Fop'=fop'. Since \p'\ is a neighborhood of \p\ this

completes the proof.
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