HOMOGENEOUS GAMES. II
J. R. ISBELL

Introduction. This paper describes strong simple homogeneous #-
player games for several values of # of the form 2¢(2!—1), I>k;
specifically, for the (Mersenne) primes 2'—1 and for the first two
composite values, 15, 63 (for any k2 <!). The problem of the existence
of such a game remains open for n =20, 24, 40, - - - .

Let us call the games fair games for short. Heuristically, a fair
game of n players is a rule for deciding disputed binary questions
without giving any one player an advantage—for example, majority
rule, if # is odd. Arrow’s theorem on the nonexistence of a social
welfare function [2] asserts in effect that for questions which are
more than binary, no fair complete rule is possible.

Precisely, a fair game on a set N of players is a family of subsets of
N, called winning sets, such that (a) every set containing a winning
set is winning, (b) the complement of a winning set is not winning,
(c) the complement of a nonwinning set is winning, and (d) the group
of all permutations of NV which take winning sets to winning sets is
transitive.

The problem of constructing a fair game reduces at once [1,
Lemma 1] to the problem of constructing its group: a transitive group
of permutations, every element of which has at least one odd cycle.
We recall from [1] that the class of all #» for which a fair n-player
game exists is closed under multiplication and contains the odd =
and the =2 (mod 4), except 2. Impossibility is known only for # a
power of 2 (except 1) and n=12.

1. The construction utilizes the finite projective space
P=PG(2, I—1) over the two-element field. Observe that P has a
collineation permuting its 2! —1 points cyclically [3, pp. 384-385].

LeMMmA. If 21—1 is prime, 15, or 63, then PG(2, 1—1) admits a
transitive collineation group Z of odd order such that for any z in Z and
any 1—1 hyperplanes H; in P, there is p& P such that the number of
points common to the orbit of p under powers of z and H,, for each 1, is
odd.

PRrOOF. Let Z be a cyclic collineation group as in [3]. Specifically,
for I=4 and 1=6, we take x*+x-+1 and x®*+x+1 as the irreducible
polynomials in Singer’s construction.
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If z is a generator of Z, the orbit of any p is all of P and the inter-
section with every hyperplane is odd. If z is the identity, choose p
common to all H;. For primes 2!—1, there is no other case. For the
case /=4, computation shows that the exceptional orbits are (a) lines
(3 points) and (b) skew pentagons V such that every plane contain-
ing two points of V contains exactly three points of V. Each kind of
orbit has odd intersection with every plane. The same thing happens
for [=6; all exceptional orbits are unions of odd numbers of (a) lines
or (b) planes. This establishes the lemma.

I do not know whether the lemma remains valid for PG(2, 7) or
for other spaces of composite order.

2. For any !/ satisfying the conditions of the lemma, for any k </,
we construct first a group H of functions on P=PG(2, I—1) which
may be described as the direct sum of & copies of the group of comple-
ments of hyperplanes. Precisely, let Sy denote the empty set, and
Si, - -+, Sm (m=2'—1) the complements of hyperplanes in P. The
sets S; form a group under symmetric difference, since the symmetric
difference of the complements of two hyperplanes intersecting in an
(!—3)-subspace T is the complement of the third hyperplane through
T. Let K be the direct sum of %k copies of Z;, with generators
a, + -+ ,ar In the group KP of all functions on P to K, let
fi; G=1, - -, k; =0, - - -, m) denote the function which takes the
value @; on S; and 0 on its complement. (All f;, vanish.) Let H be the
subgroup generated by these functions. Then every element of H has
the form D i=% fijc; for these functions include the generators f;; and
are closed under addition. (The group is commutative, and fi, +fi =fs:
for suitable ¢.)

Next let Q be an index set of 2* elements and select a transitive
action of K on Q. (For example, let Q be a product of % two-element
sets and let a; operate by changing every ith coordinate.) On the
product set PXQ, of 2*m elements, we define an action of H by
h(p, @) = (p, B(p)(q)). Let Z be a group acting on P as in the lemma,
and let Z act on P XQ by z(p, ¢) =(2(p), q). Let G be the least group
of permutations of P X(Q containing H and Z.

Since the group of functions H is invariant under collineations of
P, Z is contained in the normalizer of H and every element of G can
be written (uniquely) in the form Az, Explicitly, ks(p, q)
= (2(p), h(2(9))(9)), and (h2)*(p, @) = (2*(p), [ 22721 h(z"($))](q)). Now
the order of z is an odd number, and every cycle of z is odd. As for &,
it is a sum of k£ or fewer functions f;;; by the lemma, there is p in P
such that the number of points common to the orbit of p under powers
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of 2z and each S; is even. Let s be the number of points of the orbit
and ¢ any index in Q. For r<s, (h2)"(p, q) differs from (p, ¢) in the
first coordinate; but (k2)*(p, q¢) = (¢, ¢). Thus every element of G has
an odd cycle. As we noted above, this implies [1] the existence of a
fair game of 2¥(2!—1) players.
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1. Introduction. Let v denote the canonical isomorphism of a Ban-
ach space X into its second conjugate space X **. An example is given
by James [4] of a space X for which X is separable, X is not reflexive,
X is isomorphic to X**, and X**/7(X) is one-dimensional. Civin and
Yood undertook a more complete investigation of Banach spaces X
such that X**/7(X) is (finite) n-dimensional and called such spaces
quasi-reflexive Banach spaces of order n. If Q is a subset of X*, let
o(X, Q) denote the least fine topology for X such that all x*€Q are
continuous. In [1] Civin and Yood establish the following result.

THEOREM A. The following statements are equivalent:

(1) X s quasi-reflexive of order n.

(2) There is an equivalent norm for X such that X*=Q @ R where Q
is a total closed linear manifold such that the unit ball of X is compact in
a(X, Q) and R is an n-dimensional linear manifold.

It is the purpose of this paper to study properties of the topologies
a(X, Q), where X*=Q@R, Q is a total closed linear manifold, and
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