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If ï is a family of nonempty sets, then by a choice function on S

we mean a function /on í such that f(S)ÇzS for every SÇzS. The

axiom of choice for finite sets may be formulated as follows:

(ACF) If S is any family of nonempty finite sets, then there exists a

choice function on S.

We shall denote the axiom of choice (for families of arbitrary non-

empty sets) by (AC). It is easy to see that the ordering principle

(which asserts that every set can be totally ordered) implies (ACF).1

On the other hand, Mostowski [4] has shown that (relative to a

suitable system of axiomatic set theory) the ordering principle is

actually weaker than (AC) so that (ACF), while it is surely a con-

sequence of (AC), is not equivalent to (AC) [4, Korollar II, p. 250].

The object of the present note is to obtain equivalent formulations

of (ACF) of the Zorn's lemma type. In fact, in §1 we show that

(ACF) is equivalent to both (ZLF1) and (ZLF2) below; the latter

are obtained by restricting two familiar "maximal element" forms of

Zorn's lemma to a special class of partially ordered sets, namely, to

those "with finitary covers" (see the definition below). It is note-

worthy, however, that not every form of Zorn's lemma, when so re-

stricted, is equivalent to (ACF). For example, in §2 we observe that

if the statement of either (ZLF1) or (ZLF2) is modified merely by

replacing the hypothesis of a least upper bound by that of an upper

bound, then the resulting formulation is equivalent, not to (ACF),

but to (AC) itself. And furthermore, when one formulates the natural

"maximal chain" analogue of (ZLF1) and (ZLF2), one finds that the

result is again equivalent not to (ACF) but to the full axiom of choice

(AC).
The first named author is pleased to record his indebtedness to

Professor Herman Rubin for a number of instructive conversations

on the subject of this note.

1. Zorn's lemma formulations of (ACF). Let P be a partially

ordered set. For x, y(EP, define x~y in case either (i) x = y or (ii) x

Received by the editors May 22, 1959.
1 Tarski [9, p. 82] attributes this observation to Kuratowski; for certain related

remarks, see [2; 3], and [lO]. For a study of certain variants of (ACF) (in which

cardinality restrictions are placed on the sets in S), see Mostowski [S], Szmielew

[8], and Sierpinski [7].
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and y have no common upper bound. It is clear that the relation ~ is

both reflexive and symmetric.

If x, yEP, then x covers y in case x>y and x>z>y for no zEP-

If xEP, then we shall denote by C(x) the set of all elements of P

that cover x.

It will be convenient to introduce the following definition:

Definition. We say that P is a partially ordered set with finitary

covers in case for each nonmaximal element x£P the following condi-

tions hold:

(Fl)  C(x) is not empty.

(F2) If aEC(x), then there exists a positive integer n(a) such that

any sequence a = ai-~a2,~as~ • • • in C(x) contains at most n(a) dis-

tinct terms.

(F3) If X is a nonempty subset of C(x) and if every pair of ele-

ments of X have a common upper bound, then X has a least upper

bound.

We can now formulate the following restricted forms of Zorn's

lemma:

(ZLF1) If P is a partially ordered set with finitary covers, and if

every well-ordered subset of P has a least upper bound, then P contains

a maximal element.

(ZLF2) If P is a partially ordered set with finitary covers, and if

every totally ordered subset of P has a least upper bound, then P contains

a maximal element.

Theorem 1. The axiom of choice for finite sets is equivalent to both

(ZLF1) and (ZLF2).

A key step in the proof depends upon the following lemma due to

Bourbaki:2

Lemma (Bourbaki). If P is a partially ordered set such that every

well-ordered subset of P has a least upper bound, and if <f> is a mapping

of P into itself such that x^<b(x) for every xEP, then <p(x) = x for some

xEP.

Proof of Theorem 1. We shall verify the implications (ACF)

-*(ZLF1)->(ZLF2)^(ACF). Assume first that (ACF) holds and
consider a partially ordered set P with finitary covers. We suppose

that every well-ordered subset of P has a least upper bound but that

2 The lemma is an immediate consequence of Théorème 1 and Corollaires 1 and

2 of [l ] (cf. N. Bourbaki, Éléments de mathématique, Vol. I ; Théorie des ensembles,

Chapter III, Paris, 1956, pp. 48-49); no form of the axiom of choice is used in its

proof.
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no element of P is maximal. Consider first any element x£P; by

(Fl) the set C(x) is not empty. We define the relation Rx on C(x) as

follows: For a, bEC(x), aRxb in case for some positive integer m

there exist elements x¿£C(x) (i = l, • • ■ , m) such that

a ~ Xi •—' x2 f**> • • • ~ xm ~ b.

Then Rx is an equivalence relation on C(x), and, for a£C(x), we

denote by Pi [a] the equivalence class of C(x) with representative a.

It follows from (F2) that Pi[a] is finite for each aEC(x). Then

SF = U {{Rx[a]:aE C(x)):xE P)

is a family of nonempty finite sets so that, by (ACF), there exists a

choice function / on 3\ For each xEP, set

E(x) = {f(Rx[a]):aEC(x)).

It is clear that every pair of elements of P(x) have a common upper

bound in P, and hence, by (F3), P(x) has a least upper bound </>(x) EP-

But then the mapping x—><j>(x) has the property that x<<¡>(x) for

every x£P, which is contrary to the lemma. We conclude that P

must have a maximal element and that (ACF) implies (ZLF1).

Since the implication (ZLF1)—>(ZLF2) is trivial, let us assume

(ZLF2) and consider a family S of nonempty finite sets. Denote by

P the set of all / such that / is a choice function on some subfamily

of 5F. Partially order P by defining/^g in case g is an extension of/,

and, îorfEP, denote by SD(/) the domain of/. It is easy to see that

every totally ordered subset of P has a least upper bound. Moreover,

it is clear that a function/GP is a choice function on S if (and only if)

/ is maximal in P. To verify (ACF) it will therefore suffice to show

that P satisfies conditions (F1)-(F3).

We consider a nonmaximal element/GP. Then SÇ£2D(/) f°r some

SES. Choosing an element xES, define g(S) =x and g(T) =f(T) for

PG£>(/). Then gEC(f) and condition (Fl) is satisfied.

Next, it is easy to see that gEC(f) if and only if S(g) = £)(/)U {SB}

for some (unique) set S0ES — ©(/), from which it follows that, for

g, hEC(f), g^h if and only if Sg = Sh- Thus ~ is an equivalence rela-

tion on C(f). We claim that each '-«-'-equivalence class Q of C(f) is

finite. To see this, let gEQ and suppose that Sh^Sg for some hEQ-

If we define k(Sg) = g(Sg), k(Sh)=h(Sh), and k(T) =f(T) for PG £>(/),
then kEP and g^k, h^k, a contradiction. Hence Sh = Sg for every

hEQ- But S0 is finite, from which we conclude that Q is finite. It is

now clear that P satisfies condition (F2).

Finally, let Xbea nonempty subset of C(f) such that every pair
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of elements of X have a common upper bound. Then Sg^Sh for

every pair of distinct functions g, ÂGA. We can therefore define

a function &GP as follows: k(T)=f(T) for TÇi£>(f), and, for each

gGA, k(Sg) =g(Sg). It is then clear that k is the least upper bound

of X and condition (F3) is satisfied. The proof is now complete.

2. Some equivalent formulations of (AC). Let us denote by

(ZLF1*) and (ZLF2*) the modifications of (ZLF1) and (ZLF2),
respectively, obtained by replacing, in their statements, "least upper

bound" by "upper bound."

The following observation, originally devised for a slightly different

purpose, was communicated to us by Herman Rubin: Let P be any

partially ordered set, let N be the set of all positive integers with its

usual order, and partially order the cartesian product Q = PXN

lexicographically. Then (as one easily sees) the following statements

are equivalent: (i) Every totally ordered subset K of P has an upper

bound xGA- (ii) Every totally ordered subset of Q has an upper

bound.

Now for each element (x, «)G(?, C((x, «)) consists precisely of the

single element (x, « + 1). Hence Q trivially satisfies conditions (Fl)—

(F3). Since Q obviously has no maximal element, both (ZLF1*) and

(ZLF2*) imply the existence in P of a totally ordered subset K hav-

ing no upper bound xGA, and from this we infer (AC). We therefore

have the following result:

Theorem 2. The axiom of choice is equivalent to both (ZLF1*) awd

(ZLF2*).

It is a familiar fact that (AC) is equivalent to the "maximal chain

theorem": If P is a partially ordered set, then every chain ( = totally

ordered set) in P is contained in a maximal chain. In view of Theorem

1, it is therefore natural to consider the following restricted form of

the maximal chain theorem:

(MCTF) If P is a partially ordered set with finitary covers, then every

chain in P is contained in a maximal chain.

Theorem 3. The axiom of choice is equivalent to (MCTF).

Proof.3 Since (AC) obviously implies (MCTF), let us assume

(MCTF) and consider an arbitrary partially ordered set P and a chain

CQP. Denote by Q the family of all chains in P and partially order

(P = eW{p} by inclusion. It is clear that (P satisfies condition (Fl),

3 This is an adaptation of an argument due to Scott [ó]. We are indebted to Pro-

fessor Rubin for calling our attention to Scott's argument and to its applicability in

the present context.
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and, since (P is a complete lattice, (P also satisfies (F2) and (F3).

Therefore (P contains a maximal chain X. such that CG3C, and hence

A = U {A : ACzXi~\e} is a maximal chain in P containing C. We

conclude that (MCTF) implies (AC).
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