REMARKS ON CAUCHY'S INTEGRAL FORMULA IN MATRIC SPACES

JOSEPHINE MITCHELL

1. Introduction. Recently several proofs of Cauchy's integral formula have been given for matric spaces [2; 4; 5; 7]. However a short direct proof is available by using the argument that Morita gives to prove the Poisson formula (see §2). In §3 the formula is also proved by means of a minimal problem, similar to those introduced by Bergman [1]. Since the present paper is closely related to Morita's [7], we use his notation wherever possible.

The matric spaces under consideration are the four main types of irreducible bounded symmetric domains given by E. Cartan [3]. Let z be a matrix of complex numbers, z' its transpose, z^* its conjugate transpose and $I^{(r)}$ the identity matrix of order r. Then the first three types are defined by

(1)
$$D = E[z \mid I^{(n)} - z^*z > 0],$$

where

- I. \mathfrak{A}_{mn} : z is a matrix of type $(m, n)(m \ge n)$.
- II. \mathfrak{S}_n : z is a symmetric matrix of order n.
- III. \mathfrak{L}_n : z is a skew symmetric matrix of order n.

The fourth type is

IV. \mathfrak{M}_n : the set of all matrices z of type (n, 1) (that is, n-dimensional vectors) such that

(2)
$$|z'z| < 1$$
, $1 - 2z^*z + |z'z|^2 > 0$.

It is known that each of the domains possesses a distinguished boundary B [1], which is defined by

$$z^*z = I^{(n)}$$

for \mathfrak{A}_{mn} , \mathfrak{S}_n and for \mathfrak{A}_n if n is even, or the eigenvalues of z^*z are all 1 except one which is zero if n is odd. For \mathfrak{M}_n , B is given by

$$(4) z^*z = 1, |z'z| = 1.$$

2. Cauchy's integral formula. We define a kernel function (the Cauchy kernel) by

(5)
$$K(z, \zeta) = V^{-1} \det^{-p} (z - \zeta),$$

Received by the editors March 4, 1959 and, in revised form, May 11, 1959.

where p=n for domains \mathfrak{A}_{nn} , (n+1)/2 for \mathfrak{S}_n , (n-1)/2 for \mathfrak{R}_n if n is even, and V is the Euclidean volume of the domain B. For domains \mathfrak{M}_n

(6)
$$K(z,\zeta) = V^{-1}[(z-\zeta)'(z-\zeta)]^{-n/2}.$$

Then

THEOREM 1. Let f(z) be regular in D and continuous on \overline{D} (the closure of D), where D is one of the domains \mathfrak{A}_{nn} , \mathfrak{S}_n , \mathfrak{L}_{2n} or \mathfrak{M}_n . Then

(7)
$$f(\zeta) = \int_{\mathbb{R}} K(\zeta, z) f(z) \dot{z}, \qquad \zeta \in D,$$

where

$$\dot{z} = c_{n1} \prod_{j,k=1}^{n} dz_{jk} \qquad \qquad \text{for } \mathfrak{A}_{nn}$$

$$= c_{n2} \prod_{j=1;k\geq j}^{n} dz_{jk} \qquad \qquad \text{for } \mathfrak{S}_{n}$$

$$= c_{n3} \prod_{j=1;k>j}^{n-1} dz_{jk} \qquad \qquad \text{for } \mathfrak{R}_{n} \ (n \text{ even})$$

$$= c_{n4} \prod_{j=1}^{n} dz_{j} \qquad \qquad \text{for } \mathfrak{M}_{n},$$

and the constants c_{nj} are such that $V^{-1}\int_B K^{-1}(z,0)\dot{z}=1$ in each case. (We note that $K^{-1}(z,0)\dot{z}$ is the Euclidean volume element for the set B [7].)

PROOF. We shall restrict ourselves to the case $D = \mathfrak{A}_{nn}$ but the other cases may be treated similarly. See [7, §16] for the details in the case \mathfrak{M}_n .

It is known that the set of analytic mappings taking D onto itself and ζ into 0 and the inverse transformations are given by [8]

(9)
$$w = a(z - \zeta)(d - d\zeta^*z)^{-1},$$

$$z = \sigma(w) = (a + wd\zeta^*)^{-1}(wd + a\zeta)$$

$$= (a^*w + \zeta d^*)(d^* + \zeta^*a^*w)^{-1},$$

subject to the conditions

(9a)
$$a(I - \zeta \zeta^*)a^* = I, \qquad d(I - \zeta^* \zeta)d^* = I, \qquad \zeta^*a^*a = d^*d\zeta^*,$$

 $a^*a - \zeta d^*d\zeta^* = I, \qquad d^*d - \zeta^*a^*a\zeta = I,$

 $(I = I^{(n)})$. Also these transformations leave the set B invariant.

Suppose first that f(z) is analytic on \overline{D} and consider the expression

$$F(\zeta, z, z^*, \dot{z}) = f(z) \det^{-n} (I - z^*\zeta) dv_z,$$

where dv_z is the Euclidean volume element of the set B:

$$dv_z = \det^{-n} z\dot{z}$$
.

Under the transformation (9)

$$\dot{z} = \frac{\partial(z)}{\partial(w)} \dot{w}$$

but [6]

$$\frac{\partial(z)}{\partial(w)} = \det^{-n} (a + wd\zeta^*) \det^{-n} (d^* + \zeta^*a^*w).$$

Also since $w^*w = I$,

$$dv_* = \det^{-n} (d + w^*a\zeta) \det^{-n} (d^* + \zeta^*a^*w) dv_w$$

and

$$I - z^*\zeta = (d + w^*a\zeta)^{-1}d(I - \zeta^*\zeta).$$

Thus

$$\int_{R} F(\zeta, z, z^{*}, \dot{z}) = \det^{-n} d \det^{-n} (I - \zeta^{*} \zeta) \int_{R} f_{0}(w) dv_{w}.$$

where

(10)
$$f_0(w) = \det^{-n} (d^* + \zeta^* a^* w) f(\sigma(w))$$

is regular on \overline{D} .

By a theorem due to H. Cartan a regular function on \overline{D} can be expanded on \overline{D} into a uniformly convergent series of homogeneous polynomials, $\sum_{n=0}^{\infty} a_n P_n(w)$, where $P_0(w)$ is a constant so that $a_0 P_0 = f_0(0)$ and P_n is of degree > 0 for n > 0. Also since B is circular [5]

$$\int_{B} P_{n}(w) dv_{w} = 0 \qquad \text{for } n > 0.$$

Thus

$$\int_{\mathbb{R}} f_0(w) dv_w = V f_0(0)$$

and by (9a) and (10)

$$(1/V)\int_{B} F(\zeta, z, z^{*}, \dot{z}) = f(\zeta).$$

Since on $z^*z = I$,

$$\det^{-n} (I - z^*\zeta) dv_z = \det^{-n} (z - \zeta) \dot{z},$$

(7) follows for functions regular on \overline{D} .

In case f(z) is regular on D and continuous on \overline{D} , following Morita, we have

$$f(t\zeta) = \int_{\mathcal{B}} K(\zeta, z) f(tz) dv_z$$

for any real number t such that $0 \le t < 1$. Letting $t \to 1^-$ we see that (7) holds for such a function f(z). Thus Theorem 1 is proved.

3. Minimal problem. Let D be an arbitrary bounded domain in the space of n complex variables with a distinguished boundary B. Let ζ be an arbitrary fixed point of D and consider the subclass S of regular functions f on \overline{D} such that $f(\zeta) = 1$. Suppose there exists a function $M(\zeta, z)$ of S which minimizes the integral

$$\int_{B} |f(z)|^{2} dv_{z}, \qquad \in S.$$

Then defining

(11)
$$K_0^*(\zeta,z) = M(\zeta,z) / \int_B M(\zeta,w) dv_w,$$

we have

$$\frac{K_0^*(\zeta,z)}{K_0^*(\zeta,\zeta)} = \frac{M(\zeta,z)}{\displaystyle\int_{\mathbb{R}} M(\zeta,w) dv_w} \cdot \int_{\mathbb{R}} \frac{M(\zeta,w) dv_w}{M(\zeta,\zeta)} = M(\zeta,z).$$

In analogy to the case of one complex variable we call the function $K_0(\zeta, z)$ the Szegö kernel of the domain D.

THEOREM 2. Let $M(\zeta, z)$ be a solution of the above minimal problem and $K_0(\zeta, z)$ the kernel defined by (11). Then for any f regular on \overline{D} the (reproducing) formula

(12)
$$f(\zeta) = \int_{\mathbb{R}} K_0(\zeta, z) f(z) dv_z, \qquad \zeta \in D.$$

holds. Also the minimum value of the integral is $[1/K_0(\zeta, \zeta)]$.

PROOF. From the minimal property for any arbitrary complex ϵ and regular f

$$\int_{R} |M|^{2} dv \leq \int_{R} |M + \epsilon [f(z) - f(\zeta)]|^{2} dv.$$

Thus

$$2 \operatorname{Re} \left[\epsilon \int_{B} M^{*} [f(z) - f(\zeta)] dv \right] + \left| \epsilon \right|^{2} \int_{B} \left| f(z) - f(\zeta) \right|^{2} dv \ge 0.$$

Since $|\epsilon|$ and arg ϵ are both arbitrary, it follows that

$$\int_{B} M^{*}(\zeta, z) \big[f(z) - f(\zeta) \big] dv = 0,$$

from which (12) results. Also from (12)

$$\int_{B} |M(\zeta,z)|^{2} dv = |K_{0}^{-2}(\zeta,\zeta)| \int_{B} K_{0}(\zeta,z) K_{0}^{*}(\zeta,z) dv$$
$$= K_{0}^{-1}(\zeta,\zeta).$$

For the matric spaces as we have seen in §2 this formula is valid for any f regular on D and continuous on \overline{D} .

For the domains \mathfrak{A}_{nn} , \mathfrak{S}_n and \mathfrak{L}_{2m} the kernel $K_0(\zeta, z)$ is equal to

(13)
$$K_0(\zeta, z) = V^{-1} \det^{-p} (I - z^*\zeta),$$

which equals $\det^p z \ K(\zeta, z)$ if $z \in B$, where p has the same values as for the kernel $K(\zeta, z)$; for \mathfrak{M}_n

(13a)
$$K_0(\xi, z) = V^{-1} [1 - 2z^* \zeta + (\zeta' \zeta)(z'z)^*]^{-n/2}.$$

The proof that the minimal problem has a solution for the matric spaces and that (13) satisfies (11) is similar to that in [6] for the Bergman kernel function and will be omitted here.

REFERENCES

- 1. S. Bergman, The kernel function and conformal mapping, Mathematical Surveys, no. 5, 1950.
- 2. S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. of Math. vol. 45 (1944) pp. 686-707.
- 3. E. Cartan, Sur les domains bornés homogènes de l'espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg vol. 11 (1936) pp. 116-162.
- **4.** L. K. Hua, On the theory of functions of several complex variables, I-III (in Chinese), Acta Math. Sinica vol. 2 (1953) pp. 288-323; vol. 5 (1955) pp. 1-25 and pp. 205-242.

- 5. ——, Harmonic analysis of the classical domains in the study of analytic functions of several complex variables, mimeographed notes, about 1956.
- 6. J. Mitchell, The kernel function in the geometry of matrices, Duke Math. J. vol. 19 (1952) pp. 575-584.
- 7. K. Morita, On the kernel functions of symmetric domains, Science Reports of the Tokyo Kyoiku Daigaku, Section A vol. 5 (1956) pp. 190-212.
- 8. C. L. Siegel, Analytic functions of several complex variables, Notes by P. T. Bateman, Institute for Advanced Study, Princeton, 1948-1949.

THE PENNSYLVANIA STATE UNIVERSITY

A COUNTABLE INTERPOLATION PROBLEM

Z. A. MELZAK

1. Let \mathcal{K} be the set of all order-preserving homeomorphisms of I = [0, 1] onto itself. \mathcal{K} is a metric space in the uniform metric ρ :

(1)
$$\rho(f_1, f_2) = \max_{I} |f_1(x) - f_2(x)|, \qquad f_1, f_2 \in \mathfrak{R}.$$

Franklin [1] has proved the following theorem: (A) Let A and B be two countable sets, each dense on I. Then the set of analytic $f \in \mathcal{R}$, such that f(A) = B, is dense in \mathcal{R} .

It follows from (A) and from its extension in [2] that there exist nontrivial analytic functions $f \in \mathcal{K}$, such that f(x) is transcendental for each transcendental $x \in I$, and for each algebraic $x \in I$, x and f(x) are algebraic and of the same degree.

In this note, without using either of these results, we prove a similar but complementary statement by means of Baire's Category Theorem.

THEOREM 1. Let \mathcal{K}_{α} , $\alpha > 2$, be the subset of \mathcal{K} consisting of all functions $f \in \mathcal{K}$, whose values are either rational or transcendental and approximable to degree $> \alpha$, for each algebraic $x \in I$. Then \mathcal{K}_{α} is a dense G_{δ} -set of second category in \mathcal{K} .

2. Since \mathcal{K} is not complete in ρ , we first remetrize it. Let

(2)
$$\sigma(f_1, f_2) = \rho(f_1, f_2) + \rho(f_1^{-1}, f_2^{-1}), \qquad f_1, f_2 \in \mathcal{K}.$$

LEMMA 1. 3C is complete in the σ-metric.

Let $\mathfrak{F}=I^I$ be the set of all continuous maps from I into I, then \mathfrak{F} is complete in ρ . Let $\{f_n\}$, $n=1, 2, \cdots$, be a σ -Cauchy sequence in \mathfrak{R} . Then $\{f_n\}$ is also a ρ -Cauchy sequence in \mathfrak{F} , therefore $f_n \rightarrow f$,

Received by the editors May 8, 1959 and, in revised form, May 25, 1959.