REMARKS ON CAUCHY’S INTEGRAL FORMULA IN
MATRIC SPACES

JOSEPHINE MITCHELL

1. Introduction. Recently several proofs of Cauchy’s integral
formula have been given for matric spaces [2; 4; 5; 7]. However a
short direct proof is available by using the argument that Morita
gives to prove the Poisson formula (see §2). In §3 the formula is also
proved by means of a minimal problem, similar to those introduced
by Bergman [1]. Since the present paper is closely related to Morita’s
[7], we use his notation wherever possible.

The matric spaces under consideration are the four main types
of irreducible bounded symmetric domains given by E. Cartan [3].
Let z be a matrix of complex numbers, 2’ its transpose, z* its conjugate
transpose and I® the identity matrix of order r. Then the first three
types are defined by

1) D = E[z| I™ — z*3 > 0],

where

I. Wr: 2 is @ matrix of type (m, n)(m=n).

II. &,:zis a symmetric matrix of order #.

III. {,:zis a skew symmetric matrix of order #.
The fourth type is

IV. IM,.: the set of all matrices 2z of type (n, 1) (that is, #-dimen-
sional vectors) such that

(2) |#z] <1, 1— 2%+ | 2'z[2> 0.

It is known that each of the domains possesses a distinguished bound-
ary B [1], which is defined by

3) g*g = I™

for Apma, S, and for &, if # is even, or the eigenvalues of z*z are all
1 except one which is zero if # is odd. For I,, B is given by

4) ¥z =1, | 22| = 1.

2. Cauchy’s integral formula. We define a kernel function (the
Cauchy kernel) by

(%) K(z,¢) = V-ldet? (z — %),
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where p=n for domains N,., (n+1)/2 for S,, (n—1)/2 for L, if =
is even, and V is the Euclidean volume of the domain B. For domains

Na
(6) K@z $) =V G - )@ — e
Then

THEOREM 1. Let f(2) be regular in D and continuous on D (the
closure of D), where D is one of the domains Nnn, Sn, Lon 0r Ma. Then

% 1©) = [ K6, 91, €D,
B
where
2= Cn1 H dZ,'k for 2[1".
3 k=1
= Cn2 H dz,-;, f01’ @”
J=Lk2j
(8) s
=cns 1] dzix for 8, (n even)
J=lik>j
= ¢ | ] d; for M.,
=1

and the constants c,; are such that V=1[pK~1(z, 0)2 =1 in each case. (We
note that K='(z, 0)z is the Euclidean volume element for the set B [7].)

Proor. We shall restrict ourselves to the case D =,, but the other
cases may be treated similarly. See [7, §16] for the details in the case
M.

It is known that the set of analytic mappings taking D onto itself
and { into 0 and the inverse transformations are given by [8]

w = a(z — {)(@ — ds*2)7,
) = o(w) = (¢ + wdt*)~(wd + af)
= (¢*w + §d*)(@* + $*a*w)7,
subject to the conditions -
o) oI — Ma* =1, d(I —*)d* =1,  *a*a = d*dg*,
a*q — fd*di* =1, d*d — t*a*ar = I,

(I=1I™), Also these transformations leave the set B invariant.
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Suppose first that f(3) is analytic on D and consider the expression
F(¢, 3, 2%, 3) = f(2) det™ (I — 3*{)dv,,
where dv, is the Euclidean volume element of the set B:
dv, = det™"z3.

Under the transformation (9)

,_ 02
g=—"—w
a
but [6] w
iz)_ = det™ (¢ + wd¢*)det ™ (d* + {*a*w).
a(w)

Also since w*w =1,
dv, = det™ (d + w*a¢) det™ (@* + *a*w)dvy,

and
I — 2% = (d+ w*ef) 4 — §*5).
Thus
f F(t, 2, 2%, 2) = detddet™ (I — {*) f So(w)dv,.
B B
where
(10) Jo(w) = det™ (@* + {*a*w)f(a(w))

is regular on D.

By a theorem due to H. Cartan a regular function on D can be ex-
panded on D into a uniformly convergent series of homogeneous
polynomials, D .., a.P.(w), where Po(w) is a constant so that
T.)I]’o =f4(0) and P, is of degree >0 for n>0. Also since B is circular

5

fP,.(w)dv.,, =0 forn > 0.
B
Thus

[ swrase = v1ic0

B

and by (9a) and (10)
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am [ PG, 5,0 = 1)

Since on g*z=1,
det™ (I — 2*¢)dv, = det™ (z — ¢{)3,

(7) follows for functions regular on D.
In case f(z) is regular on D and continuous on D, following Morita,
we have

) = f G, ).

for any real number ¢ such that 0=¢<1. Letting t—1~ we see that
(7) holds for such a function f(z). Thus Theorem 1 is proved.

3. Minimal problem. Let D be an arbitrary bounded domain in
the space of # complex variables with a distinguished boundary B.
Let ¢ be an arbitrary fixed point of D and consider the subclass S of
regular functions f on D such that f({) =1. Suppose there exists a
function M(¢, 2) of S which minimizes the integral

[ lslean, es.
Then defining
an KG9 = M9 [ f M, w)dow,
we have
Ks@d __ MGD [ MG

K&k(g-’g-) fM(g','LU)d‘Uw B M(g"g.)
B

In analogy to the case of one complex variable we call the function
Ko(t, 2) the Szego kernel of the domain D.

THEOREM 2. Let M({, 2) be a solution of the above minimal problem
and K¢, z) the kernel defined by (11). Then for any f regular on D the
(reproducing) formula

(12) 1) = fBKo«, 2f(@)dos, ¢ € D.

holds. Also the minimum value of the integral is [1/Ko(¢. £)].
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Proor. From the minimal property for any arbitrary complex e
and regular f

[ Voo s [ 130+ dito) = 501 2.
B B

Thus

2Re [« [ i) — s@)lis | + 1<l [ 15 = s vz 0

Since | €| and arg e are both arbitrary, it follows that

J 2@ 9l = 1l = o,
from which (12) results. Also from (12)

f | M, 9 2o = | K526, 9) | f Kols, K&, 2)do
= KO‘I(;, g-)

For the matric spaces as we have seen in §2 this formula is valid
for any f regular on D and continuous on D.
For the domains .., ©, and &, the kernel Ko({, z) is equal to

(13) KO(.(: Z) = V-ldet? (I - Z*g-))

which equals det?z K({, 2) if 2EB, where p has the same values as
for the kernel K(¢, z); for M,

(13a) Kot 2) = V7I[1 = 22% + (') (&'a)* ]2

The proof that the minimal problem has a solution for the matric
spaces and that (13) satisfies (11) is similar to that in [6] for the
Bergman kernel function and will be omitted here.
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A COUNTABLE INTERPOLATION PROBLEM
Z. A. MELZAK

1. Let 3¢ be the set of all order-preserving homeomorphisms of
I=[0, 1] onto itself. 3¢ is a metric space in the uniform metric p:

(1) o(f1, f2) = max | fu(x) = fa() |, fuf: € 3.

Franklin [1] has proved the following theorem: (A) Let 4 and B
be two countable sets, each dense on I. Then the set of analytic
fER, such that f(4) =B, is dense in JC.

It follows from (A) and from its extension in [2] that there exist
nontrivial analytic functions f& 3¢, such that f(x) is transcendental
for each transcendental x &1, and for each algebraic x &1, x and f(x)
are algebraic and of the same degree.

In this note, without using either of these results, we prove a
similar but complementary statement by means of Baire’s Category
Theorem.

THEOREM 1. Let KXo, a>2, be the subset of 3C consisting of all func-
tions fE&3C, whose values are either rational or transcendental and ap-
proximable to degree >a, for each algebraic xCI. Then X, is a dense
Gs-set of second category in 3C.

2. Since 3¢ is not complete in p, we first remetrize it. Let
(2 a(fy, f2) = o(f1, fo) + p(fT% f"), fu 2 € 3C.
LEMMA 1. 3C is complete in the a-metric.

Let §=1I7 be the set of all continuous maps from I into I, then §
is complete in p. Let {f,.}, n=1,2, - - -, be a 0-Cauchy sequence in
3¢. Then { fn} is also a p-Cauchy sequence in &, therefore f,—f,
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