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Let (11a) be the set of uniform structures compatible with the topol-

ogy of a completely regular space E. The least fine lu, that makes all

real-valued continuous functions uniformly continuous, is called the

Nachbin uniform structure. It is denoted by ll^P). We present here

the following questions:

If P is a completely regular space, is the equality c\Ln(EXE)

= tUjv(P)XtUjv(P) valid? For a compact space E, that equality is

valid. This is obvious enough not to require a proof. For a non-

compact space P, that equality is in general not valid. In this article

we will give a partial answer to this question. We will show that in

the most interesting cases (except that of the compact spaces), the

answer is negative.

We have the finest uniform structure compatible with the topology

of P. It is denoted by ^(P), and the following is true:

If ^(P) is a uniform structure on E such that every continuous and

finite écart on E is uniformly continuous on PXP with the uniform

structure Ot(P)Xcll(P), then m(P) =CU0(P).

Proposition 1. Let E be a completely regular space. If IIaKPXP)

= c\Ln(E) XIIjvÍP), then 'VLn(E) =tU0(P).

Proof. Every real-valued continuous function of PXP with

%N(EXE) is uniformly continuous. As llj^PXP) =c\Ln(E)XcVln(E)

then every continuous and finite écart on P, with c\Lif(E) XIIjv(P), is

uniformly continuous. Then, c[Lif(E)=c\Lo(E).

Proposition 2. Let E be a completely regular space. If %n(E)

= cUo(P), then every open partition of E is countable.

Proof. Tukey has shown that each uniform structure on E is deter-

mined by the family of uniform coverings of E in this structure [9].

Shirota proved Tukey's conjecture that the family of all countable

normal coverings of E is always the family of uniform coverings for a

uniform structure V..(E) [&]. Evidently ^„(P) is finer than c\Ln(E).

On the other hand, the uniform coverings for 1lo(P) are precisely

the normal coverings [9], and every open partition is trivially normal.

Thus if lloiP) = c\Ln(E), then every open partition must be countable.

Corollary. Let E be a completely regular space such that 'Mn(E)

X<\1n(E)=c\Ix(EXE). Then, every open partition is countable.
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With the purpose of arriving at the Theorem and the subsequent

considerations which will give us very interesting information for our

problem, we will make a preliminary preparation.

A completely regular space E is called a P-space if every countable

intersection of open sets of E is open. A completely regular space E is

a P-space if, and only if, for all/GC(E, R), /-1(0) lS open [3, Theo-

rem 5.3].

We define the following uniform structure compatible with the

topology of a P-space E:

For every real-valued continuous function we define U/ = \JreRf~1(r)

Xf~l(r). The family (U/)fec<E,R) is a base for a filter for a uniform

structure compatible with the topology of E. This uniform structure

is called the natural uniform structure. It is denoted by ^(E) [5j.

Proposition 3. Let E be a P-space and EXE a Lindelbf space, i.e.,

each open covering of EXE has a countable subcovering. Then,

<VLN(E X E) = <VLir(E) X *M£).

Note. There is a nontrivial P-space, i.e., different from a discrete

space and such that the hypotheses of the Proposition 3 are satisfied.

Let E be a set of cardinal number equal to Ki and x£E. We define

on E the following topology: for x the filter of neighborhoods is given

by all sets V such that x£ V and E — V is countable and all the points

different from x are open. The set E with this topology satisfies the

hypotheses of the proposition above.

Proof of the Proposition 3. As E is a P-space and a Lindelöf

space, then 'Vln(E) =cUp(£) [6, Proposition 3]. As EXE is a Lin-

delöf space cUp(EXE)=clL»(E)XcM£) [6, Proposition 4]. This

implies <UN(EXE) =<VLn(E)XcUn(E).

A completely regular space is called a pseudo-compact space if all

real-valued continuous functions are bounded.

Theorem. Let Ebea completely regular space. In order that 1Ljv(E XE)

= c\LtfiE)Xc\ltfiE), it is necessary that E be a pseudo-compact space, or

a P-space such that every open partition is countable.

Proof. Let E be a completely regular space non-P-space and non-

pseudo-compact space. There exists a real-valued continuous non-

bounded function / and x0£E such that/ is nonconstant on every

neighborhood of x0. Let us show that the continuous function g : g(x, y)

=f(x)-f(y), defined on EXE, is nonuniformly continuous with re-

spect to the uniform structure c[Ln(E)Xc\In(E). This implies that

<UN(E)Xctí.N(E)r¿ctí.N(EXE).

Let V be any entourage of the filter of entourages of cU.n(E) and
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x(EP such that (x0, x)Ç_V and f(x) 5¿f(x0). Since/ is not bounded,

1/0*0 -f(y) ~/(xo) -/(y) I = \/(y) \ ■ \/(x) -/(x0) | can be greater than any

given number, for a convenient choice of y. Therefore g is not uni-

formly continuous. If ll^PXP) = c\lN(E) Xc\In(E) and P a P-space,

then, it results from the corollary that every open partition of E is

countable.

Note. The hypotheses of the above theorem are not sufficient. In

fact, if P is a pseudo-compact space the problem is equivalent to

knowing whether ß(EXE) =ß(E) Xß(E), where ß(X) is the Stone-

Cech compactification of a completely regular space X. We know that

ß(EXF)=ß(E)Xß(F) and P and P infinite implies that PXP is a

pseudo-compact space [4]. There are countably compact spaces A, B

(hence A, B are pseudo-compact spaces), such that .4XP is not

pseudo-compact [7]. Then, E=A\JB is pseudo-compact and PXP

is not pseudo-compact. This shows that ß(EXE)9aß(E). I. Glicks-

berg's paper Cech compactifications of products1 proved that ß(EXF)

= ß(E) Xß(F) if and only if E XF is a pseudo-compact space. Bagley-

Connell-McKnight gave a sufficient condition for a product space to

be pseudo-compact [l, Theorem 6 and Corollary].

We can say that if P is a P-space such that PXP is a Lindelöf

space, then by the Proposition 3, the condition of the above theorem

is sufficient.

We wish to thank the referee for the suggestions and references

given in the proof of the Proposition 2 and in the last note.
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