## THE AREA OF A NONPARAMETRIC SURFACE<sup>1</sup>

## HERBERT FEDERER

1. Introduction. Consider a continuous real-valued function f on Euclidean n-space,  $E_n$ , and the associated map

$$\bar{f}: E_n \to E_{n+1}, \quad \bar{f}(x) = (x_1, \dots, x_n, f(x)) \text{ for } x \in E_n.$$

It will be proved that for each finitely, rectilinearly triangulable subset W of  $E_n$  the n dimensional Lebesgue area of  $\bar{f}|W$  equals the n dimensional Hausdorff measure of  $\bar{f}(W)$ , and that if this measure is finite then  $\bar{f}(W)$  is Hausdorff n rectifiable.

For the special case n=2 these results were obtained in [F1].

The following notation will be used:

 $\mathfrak{L}_m = m$  dimensional Lebesgue measure over  $E_m$ .

$$K(x, r) = E_m \cap \{y: |y-x| < r\} \text{ for } x \in E_m, r > 0.$$

$$\alpha(m) = \mathfrak{L}_m[K(x, 1)] \text{ for } x \in E_m.$$

$$C(x, r) = E_m \cap \{y : |y - x| \le r\} \text{ for } x \in E_m, r > 0.$$

 $L_m = m$  dimensional Lebesgue area.

 $\mathfrak{F}_m^k = k$  dimensional integralgeometric measure over  $E_m$ .

 $\mathfrak{R}_m^k = k$  dimensional Hausdorff measure over  $E_m$ .

For  $X \subset E_m$ ,  $\psi_m^k(X)$  = the infimum of the sums

$$\sum_{S \in F} \alpha(k) 2^{-k} \; (\text{diam } S)^k$$

corresponding to all countable coverings F of X.

The terminology adopted here is consistent with [F1] and [F3], where detailed information concerning the basic concepts may be found.

2. A covering theorem. Solving a problem posed by Wendell H. Fleming, William Gustin [G] recently proved:

There is a number  $C_n$  such that

$$\psi_n^{n-1}(X) \le C_n \mathfrak{I} \mathcal{C}_n^{n-1}(\mathrm{Bdry}\ X)$$

for every bounded open subset X of  $E_n$ .

We include here a short variant of Gustin's argument, partly because the following lemma is useful also for other purposes.

LEMMA. If A and B are compact subsets of  $E_n$  such that  $A \cup B$  is a convex set with diameter  $\delta$ , then

Presented to the Society, June 20, 1959; received by the editors July 13, 1959.

<sup>&</sup>lt;sup>1</sup> This work was supported in part by a Sloan Fellowship.

$$\frac{\mathfrak{L}_n(A)}{\delta^n} \cdot \frac{\mathfrak{L}_n(B)}{\delta^n} \leq \alpha(n) \frac{\mathfrak{K}_n^{n-1}(A \cap B)}{\delta^{n-1}}.$$

PROOF OF THE LEMMA. Assume  $\delta = 1$ , let a and b be the characteristic functions of A and B, and whenever  $0 \neq z \in E_n$  let  $p_z$  be the orthogonal projection mapping  $E_n$  onto the subspace perpendicular to z. By Fubini's theorem

$$\mathfrak{L}_{n}(A) \cdot \mathfrak{L}_{n}(B) = \int_{E_{n}} \int_{E_{n}} a(x)b(y)d\mathfrak{L}_{n}yd\mathfrak{L}_{n}x$$

$$= \int_{E_{n}} \int_{E_{n}} a(x)b(x+z)d\mathfrak{L}_{n}zd\mathfrak{L}_{n}x$$

$$= \int_{|z| \le 1} \mathfrak{L}_{n}(\{x: x \in A \text{ and } x+z \in B\})d\mathfrak{L}_{n}z$$

$$\le \int_{|z| \le 1} \mathfrak{R}_{n}^{n-1}[p_{z}(A \cap B)]d\mathfrak{L}_{n}z \le \alpha(n)\mathfrak{R}_{n}^{n-1}(A \cap B),$$

because every segment joining  $x \in A$  to  $x+z \in B$  meets  $A \cap B$ .

PROOF OF THE COVERING THEOREM. Each  $x \in X$  is the center of a spherical ball C(x, r) with

$$\frac{\mathfrak{L}_n[C(x,r)\cap X]}{\alpha(n)r^n}=\frac{1}{2};$$

in fact this ratio depends continuously on r>0, equals 1 for small r, and approaches 0 as r approaches  $\infty$ . From [M, Theorem 3.5] one obtains a sequence of such balls  $C(x_i, r_i)$  which are disjoint and for which

$$X \subset \bigcup_{i=1}^{\infty} C(x_i, 5r_i).$$

Applying the lemma with

$$A = C(x_i, r_i) \cap \text{Clos } X$$
 and  $B = C(x_i, r_i) - X$ 

one finds that

$$\left[\frac{\alpha(n)}{2^{n+1}}\right]^2 \leq \alpha(n) \frac{\mathfrak{R}_n^{n-1}[C(x_i, r_i) \cap \operatorname{Bdry} X]}{(2r_i)^{n-1}}$$

for each i, hence

$$\sum_{i=1}^{\infty} \alpha(n-1)(5r_i)^{n-1} \leq \frac{5^{n-1}2^{n+3}\alpha(n-1)}{\alpha(n)} \, \mathfrak{SC}_n^{n-1}(\text{Bdry } X).$$

3. Density ratios. Let  $Y = \text{range } \overline{f}$ . It will be shown that

$$\psi_{n+1}^{n}[Y \cap K(p,r)] \leq C_{n}2^{n/2+2}\mathfrak{F}_{n+1}^{n}[Y \cap K(p,5r)]$$

whenever  $p \in E_n$  and r > 0. Obviously (see [F1, 10.3] or [F2, 4.1])

$$\psi_{n+1}^{n}[Y \cap K(p,r)] \leq 2^{n/2+1} \frac{\alpha(n)}{\alpha(n-1)} r \psi_{n}^{n-1}(\overline{f}^{-1}[K(p,r)]).$$

Choose a finitely, rectilinearly triangulable set Q for which

$$\bar{f}^{-1}[K(p, 4r)] \subset Q \subset \bar{f}^{-1}[K(p, 5r)],$$

assume Q is nonempty, hence  $\bar{f}^{-1}[K(p, 5r)] - Q$  is nonempty, and infer from [T, 3.8, 3.10] that

$$L_n(\bar{f}|Q) = \mathfrak{T}_{n+1}^n[\bar{f}(Q)] < \mathfrak{T}_{n+1}^n[Y \cap K(p, 5r)].$$

Use [T, 3.8] and [F3, 6.18] to secure a continuously differentiable real-valued function g, with the associated map

$$\bar{g}: E_n \to E_{n+1}, \quad \bar{g}(x) = (x_1, \dots, x_n, g(x)) \quad \text{for } x \in E_n,$$

such that

$$\bar{f}^{-1}[K(p, r)] \subset \bar{g}^{-1}[K(p, 2r)], 
\bar{g}^{-1}[K(p, 3r)] \subset \bar{f}^{-1}[K(p, 4r)], 
\mathfrak{R}_{n+1}^{n}[\bar{g}(Q)] = L_{n}(\bar{g} \mid Q) < \mathfrak{F}_{n+1}^{n}[Y \cap K(p, 5r)].$$

For 2r < t < 3r the preceding covering theorem implies

$$\begin{split} \psi_{n}^{n-1}(\overline{f}^{-1}[K(p,r)]) &\leq \psi_{n}^{n-1}(\left\{x : \left| \ \bar{g}(x) - p \right| < t \right\}) \\ &\leq C_{n} \Re_{n}^{n-1}(\left\{x : \left| \ \bar{g}(x) - p \right| = t \right\}) \\ &\leq C_{n} \Re_{n+1}^{n-1}[\bar{g}(Q) \cap \left\{y : \left| \ y - p \right| = t \right\}]. \end{split}$$

From the Eilenberg inequality ([E] or [F2, 3.2]) one obtains

$$r\psi_{n}^{n-1}(\overline{f}^{-1}[K(p,r)]) \leq C_{n} \int_{2r}^{3r} \Re_{n+1}^{n-1}[\bar{g}(Q) \cap \{y: | y-p | = t\}] dt$$

$$\leq C_{n} \frac{2\alpha(n-1)}{\alpha(n)} \Re_{n+1}^{n}[\bar{g}(Q)],$$

whence the initial assertion follows.

For  $\mathfrak{R}_{n+1}^n$  almost all p in Y it is known from  $[F1, 10.1]^2$  that

$$\limsup_{r\to 0+} \alpha(n)r^{-n}\psi_{n+1}^{n}[Y\cap K(p,r)] \geq 2^{-n},$$

and one may now conclude that

$$\limsup_{n\to 0,1} \alpha(n) s^{-n} F_{n+1}^{n} [Y \cap K(p, s)] \ge 5^{-n} C_n^{-1} 2^{-3n/2-2}.$$

4. Area, measure and rectifiability. The preceding result implies in conjunction with [F1, 3.1] that

$$\Re_{n+1}^{n}(S) \leq 5^{n} C_{n} 2^{3n/2+2} \Re_{n+1}^{n}(S)$$
 for  $S \subset Y$ ;

in case  $\mathfrak{F}_{n+1}^n(S) < \infty$  it follows from the structure theorems [F1, 9.6, 9.7] that S is  $\mathfrak{F}_{n+1}^n$  rectifiable and

$$\mathfrak{F}_{n+1}^n(S) = \mathfrak{F}_{n+1}^n(S).$$

Moreover [T, 3.8] shows that

$$L_n(\overline{f} \mid W) = \mathfrak{F}_{n+1}^n[\overline{f}(W)]$$

whenever W is a finitely, rectilinearly triangulable subset of  $E_n$ .

## REFERENCES

- E. S. Eilenberg, On  $\phi$  measures, Ann. Soc. Polon. Math. vol. 17 (1938) pp. 252-253.
- **F1.** H. Federer, The  $(\phi, k)$  rectifiable subsets of n space, Trans. Amer. Math. Soc. vol. 62 (1947) pp. 114-192.
- F2. —, Some integralgeometric theorems, Trans. Amer. Math. Soc. vol. 77 (1954) pp. 238-261.
  - **F3.** ——, On Lebesgue area, Ann. of Math. vol. 61 (1955) pp. 289-353.
  - G. W. Gustin, The boxing inequality, J. Math. Mech., to appear.
- M. A. P. Morse, A theory of covering and differentiation, Trans. Amer. Math. Soc. vol. 55 (1944) pp. 205-235.
- T. R. N. Tompson, Areas of k dimensional nonparametric surfaces in k+1 space, Trans. Amer. Math. Soc. vol. 77 (1954) pp. 374-407.

## Brown University

The proof of this lemma should be corrected as follows: On line 4 replace " $\delta/5$ " by " $\delta$ ." Replace lines 10 to 17 by "For each  $S \subseteq F$  we choose a point  $\alpha(S) \subseteq B \cap S$ . Since  $\psi(X) = \phi(X)$  whenever  $X \subseteq E_n$  and diam  $X < \epsilon$ , we have  $\phi(B) \le \sum_{S \in F} \phi(B \cap S) = \sum_{S \in F} \psi(B \cap S) \le \sum_{S \in F} \psi(B \cap C[\alpha(S), \text{ diam } S]) \le \sum_{S \in F} \lambda \chi_n^k(C[\alpha(S), \text{ diam } S]) = \lambda 2^k \sum_{S \in F} \chi_n^k(S) \le (\lambda 2^k)^{1/2} \phi(B)$ ." A similar correction is required in the proof of [F1, 3.6].