THE NONTRIVIALITY OF THE RESTRICTION MAP IN THE COHOMOLOGY OF GROUPS

RICHARD G. SWAN1

An unpublished result² of B. Mazur states that if π is any non-trivial finite group then there is an i>0 such that $H^i(\pi, Z) \neq 0$. It is, course, trivial that $H^i(\pi, A) \neq 0$ for some π -module A. The point of Mazur's theorem is that we can even take A=Z, the ring of integers with trivial π -action. Mazur's proof of this theorem is geometric. It involves imbedding π in a compact Lie group G and studying the Leray-Cartan spectral sequence of the covering $G \rightarrow G/\pi$.

The purpose of this paper is to prove the following theorem which generalizes Mazur's result.³

THEOREM 1. Let π be a finite group and ρ a nontrivial subgroup of π . Then the restriction map $i(\rho, \pi): H^i(\pi, Z) \to H^i(\rho, Z)$ [2, Chapter XII, §8] is nonzero for an infinite number of values of i > 0.

As a consequence of this theorem, we get a generalization of Mazur's result.

COROLLARY 1. Let π be a finite group and let p be a prime dividing the order of π . Then $H^i(\pi, Z)$ has a nonzero p-primary component for an infinite number of values of i > 0.

To see this we have merely to use Theorem 1, choosing for ρ any nontrivial p-group in π .

The proof of Theorem 1 will also be geometric. In fact, I will actually prove the following much more general theorem whose proof must necessarily be geometric.

THEOREM 2. Let G be a compact, not necessarily connected Lie group. Let H be a closed nontrivial subgroup of G, also not necessarily connected. Let $f: B_H \to B_G$ be the map of classifying spaces induced by the inclusion map $H \to G$ [1, §1]. Then $f^*: H^i(B_G, Z) \to H^i(B_H, Z)$ is nonzero for an infinite number of values of i.

REMARK. If H has an element of order p, the proof of this theorem will also show that $f^*: H^i(B_G, Z_p) \to H^i(B_H, Z_p)$ is nontrivial for an infinite number of values of i. If H is infinite, it will show that

Received by the editors, November 24, 1959.

¹ Sponsored by the Office of Ordnance Research, U. S. Army under contract DA-11-022-ORD-2911.

² I would like to thank W. Browder for communicating this result to me.

³ This theorem was suggested to me by a problem of J. T. Tate.

 $f^*: H^i(B_G, Q) \rightarrow H^i(B_H, Q)$ is nonzero for an infinite number of values of *i*. Here *Q* is the field of rational numbers.

PROOF. By the Peter-Weyl theorem G has a faithful unitary representation [4, Chapter VI, Theorem 4] and so can be imbedded in a unitary group U(n). Also, H has a subgroup isomorphic to Z_p for some prime p. This is trivial if H is finite, but if H is infinite it contains a torus [3, Exposé 23, Theorem 1] which clearly has a subgroup isomorphic to Z_p . Since the map $B_{Z_p} \rightarrow B_{U(n)}$ factors through f, it will be sufficient to prove the theorem for the case $H \approx Z_p$ and $G \approx U(l)$. (If H is infinite and we are trying to show that $H^i(B_G, Q) \rightarrow H^i(B_H, Q)$ is nontrivial, it will suffice to consider the case where $G \approx U(n)$ and H is a circle group. The rest of the proof will be substantially the same.)

Assume then that $H \approx Z_p$, $G \approx U(l)$. Imbed H in a maximal torus T of G. This can be done by taking any maximal torus T containing a generator of H [3, Exposé 23, Theorem 1]. Now, $H^*(B_T, Z)$ is a polynomial ring over Z with generators $t_1, \dots, t_l \in H^2(B_T, Z)$. The image of $H^*(B_G, Z)$ in $H^2(B_T, Z)$ consists of all symmetric polynomials in t_1, \dots, t_l [1, §4]. Therefore to prove the theorem it will be sufficient to find sufficiently many symmetric polynomials which map nontrivially into $H^*(B_H, Z)$ under the map g^* induced by $g: B_H \rightarrow B_T$. This map g is, of course, induced by the inclusion $H \rightarrow T$.

Now, $H^*(B_H, Z)$ is a polynomial ring over Z_p with a single generotor $\alpha \in H^2(B_H, \mathbb{Z})$ [2, Chapter XII, §7]. Therefore $g^*(t_\nu) = r_\nu \alpha$ with $r_{\nu} \in \mathbb{Z}_{p}$. I claim that at least one $r_{\nu} \neq 0$. Suppose to the contrary that all $r_r = 0$. Then $g^*: H^2(B_T, Z) \rightarrow H^2(B_H, Z)$ must be zero. Now $g: B_H \rightarrow B_T$ is a fiber map with fiber T/H [1, §1]. Of course, T/H is a torus, being a connected abelian Lie group. The map $g^*: H^2(B_T, Z)$ $\to H^2(B_H, Z)$ is just the map $E_2^{2,0} \to E_\infty^{2,0}$ in the spectral sequence of this fibration. If it is zero, all elements of $E_2^{2,0}$ must bound. Therefore $d_2: E_2^{0,1} \to E_2^{2,0}$ must be onto. This shows that T/H has rank l and that $H_1(T/H, Z) = E_2^{0,1}$ has a base $\{x_r\}$ such that $d_2x_r = t_r$. (Of course it is trivial that T/H has rank l, H being finite, but I have arranged the proof so that it works for $H = S^1$ without essential change.) Now $E_2^{0,2} = H^2(T/H, Z)$ has a base $x_\mu x_\nu$ with $\mu < \nu$. Since d_2 is a derivation, $d_2(x_\mu x_\nu) = t_\mu \otimes x_\nu - t_\nu \otimes x_\mu$ in $E_2^{2,1} = H^2(B_T) \otimes H^1(T/H)$. Since these elements are linearly independent in $E_2^{2,1}$, d_2 is a monomorphism on $E_2^{0,2}$ and so $E_3^{0,2}=0$. Also $E_3^{2,0}=0$ and $E_2^{1,1}=0$. Thus the spectral sequence shows that $H^2(B_H, Z) = 0$ which is absurd.

Now let s be the number of indices ν for which $r_{\nu} \neq 0$. By renumbering we can assume that $r_{\nu} \neq 0$ for $\nu = 1, 2, \dots, s$ and $r_{\nu} = 0$ for $\nu > s$.

Let x be the sth elementary symmetric function in t_1, \dots, t_l . Then, for k>0,

$$g^*(x^k) = \left(\prod_{1}^s r_r\right)^k \alpha^{sk} \neq 0.$$

Since the x^k are symmetric polynomials and have arbitrarily large dimensions, this proves the theorem.

REMARK. If l is the smallest dimension of a faithful representation of G over the complex numbers, the proof shows that $f^*: H^i(B_G, Z) \to H^i(B_H, Z)$ is nonzero for some $i \leq 2l$ (since i = 2s and $s \leq l$). This is a best possible result if no further conditions are placed on G, H and l. To see this for finite groups, let H be the cyclic group of order p permuting p symbols and let G be the normalizer of H in the symmetric group S_n .

If R denotes the real numbers, duality shows that $f_*: H_i(B_H, R/Z) \to H_i(B_G, R/Z)$ is nonzero for an infinite number of values of i. But, if π is finite, $H_i(\pi, R/Z) \approx H_{i-1}(\pi, Z)$, cf. [2, Chapter XII, Proof of Theorem 6.6]. Therefore Theorem 1 has the following corollary.

COROLLARY 2. Let π be a finite group and ρ a nontrivial subgroup of π . Then the induced map $H_i(\rho, Z) \rightarrow H_i(\pi, Z)$ is nontrivial for an infinite number of values of i > 0.

Equivalently, we may say that the transfer $t(\pi, \rho)$: $\hat{H}^i(\rho, Z) \rightarrow \hat{H}^i(\pi, Z)$ is nonzero for an infinite number of negative values of i [2, Chapter XII, Exercise 8].

Note that the example $Z_p \subset Z_p + Z_p$ shows that the restriction map can be zero in all negative dimensions and the transfer zero in all positive dimensions.

It would be interesting to have a purely algebraic proof of Theorem 1 but I know of no such proof.

REFERENCES

- 1. A. Borel et J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. vol. 75 (1953) pp. 409-448.
 - 2. H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
 - 3. P. Cartier, Séminaire Sophus Lie, Ecole Normale Supérieure, Paris, 1954-1955.
 - 4. C. Chevalley, Theory of Lie groups, Princeton, 1946.

THE UNIVERSITY OF CHICAGO