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An unpublished result2 of B. Mazur states that if ir is any non-

trivial finite group then there is an i>0 such that H'iw, Z) ¿¿0. It is,

course, trivial that H'iir, -4)^0 for some 7r-module A. The point of

M azur 's theorem is that we can even take A = Z, the ring of integers

with trivial x-action. Mazur's proof of this theorem is geometric. It

involves imbedding ir in a compact Lie group G and studying the

Leray-Cartan spectral sequence of the covering G—*G/ir.

The purpose of this paper is to prove the following theorem which

generalizes Mazur's result.3

Theorem 1. Let w be a finite group and p a nontrivial subgroup of tt.

Then the restriction map i(p, w) : H*Ít, Z)—*Hi(jp, Z) [2, Chapter XII,

§8 ] is nonzero for an infinite number of values of i>0.

As a consequence of this theorem, we get a generalization of

Mazur's result.

Corollary 1. Let it be a finite group and let p be a prime dividing

the order of ir. Then H^w, Z) has a nonzero p-primary component for

an infinite number of values of i>0.

To see this we have merely to use Theorem 1, choosing for p any

nontrivial £-group in ir.

The proof of Theorem 1 will also be geometric. In fact, I will ac-

tually prove the following much more general theorem whose proof

must necessarily be geometric.

Theorem 2. Let G be a compact, not necessarily connected Lie group.

Let H be a closed nontrivial subgroup of G, also not necessarily con-

nected. Let f: Bh—>B g be the map of classifying spaces induced by the

inclusion map H—>G [l, §l]. Then f*: H^Bq, Z)—>HiiBH, Z) is non-

zero for an infinite number of values of i.

Remark. If H has an element of order £, the proof of this theorem

will also show that /*: H\Bq, Z^-^H^Bh, Zp) is nontrivial for an

infinite number of values of i. If H is infinite, it will show that
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/*: H^Bg, Q)—*H*(Bb, Q) is nonzero for an infinite number of values

of i. Here Q is the field of rational numbers.

Proof. By the Peter-Weyl theorem G has a faithful unitary repre-

sentation [4, Chapter VI, Theorem 4] and so can be imbedded in a

unitary group £/(«). Also, H has a subgroup isomorphic to Zp for

some prime £. This is trivial if H is finite, but if H is infinite it con-

tains a torus [3, Exposé 23, Theorem l] which clearly has a sub-

group isomorphic to Zp. Since the map Bzp-^Bu(n) factors through /,

it will be sufficient to prove the theorem for the case H^ZP and

G« U(l). (If H is infinite and we are trying to show that iP(P<?, Q)

—>iP(.Btf, Q) is nontrivial, it will suffice to consider the case where

G~ Uin) and if is a circle group. The rest of the proof will be sub-

stantially the same.)

Assume then that H~ZP, G~ Uil). Imbed H in a maximal torus

T of G. This can be done by taking any maximal torus T containing

a generator of H [3, Exposé 23, Theorem l]. Now, H*iBT, Z) is

a polynomial ring over Z with generators h, ■ ■ ■ , ¿¡G-íPfPr, Z). The

image of H*iBG, Z) in H2ÍBt, Z) consists of all symmetric poly-

nomials in ti, ■ • ■ , ti [l, §4]. Therefore to prove the theorem it will

be sufficient to find sufficiently many symmetric polynomials which

map nontrivially into H*iBH, Z) under the map g* induced by

g: Bh—*Bt. This map g is, of course, induced by the inclusion H—>T.

Now, H*iBs, Z) is a polynomial ring over Zp with a single gener-

otor aEH2iBH, Z) [2, Chapter XII, §7]. Therefore g*itv)=r,a with

r,(EZp. I claim that at least one ry9^Q. Suppose to the contrary that

all rr = 0. Then g*:H2iBT, Z)^>H\BH, Z) must be zero. Now

g: BH—>BT is a fiber map with fiber T/H [l, §1 ]. Of course, T/H is a

torus, being a connected abelian Lie group. The map g*: H2iBr, Z)

-+H2iBH, Z) is just the map £2'°—»E2;0 in the spectral sequence of

this fibration. If it is zero, all elements of P2° must bound. Therefore

d2: Eij'1-^2° must be onto. This shows that T/H has rank I and

that HiiT/H, Z) =E2U has a base {x„} such that d2x, = ty. (Of course

it is trivial that T/H has rank /, H being finite, but I have arranged

the proof so that it works for H=S1 without essential change.) Now

E\2 = H2iT/H, Z) has a base xßxr with p <v. Since d2 is a derivation,

d2ixltx„)=tn®Xy — t,<gixll in E22,1 = H2iBT)®HliT/H). Since these ele-

ments are linearly independent in E2,'1, d2 is a monomorphism on

E°2* and so E$2 = 0. Also P|° = 0 and £^ = 0. Thus the spectral

sequence shows that H2iBH, Z)=0 which is absurd.

Now let s be the number of indices v for which r^O. By renumber-

ing we can assume that r,5¿0 for v=l, 2, ■ • • , s and r„ = 0 for v>s.
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Let x be the 5th elementary symmetric function in ti, ■ ■ ■ , t¡. Then,

for k>0,

«*<**) = ( n *v) «** h °-

Since the x* are symmetric polynomials and have arbitrarily large

dimensions, this proves the theorem.

Remark. If / is the smallest dimension of a faithful representation

of G over the complex numbers, the proof shows that/*: H'iBo, Z)

-^H'iBH, Z) is nonzero for some i^21 (since i = 2s and s^l). This is

a best possible result if no further conditions are placed on G, H

and /. To see this for finite groups, let H be the cyclic group of order

£ permuting £ symbols and let G be the normalizer of H in the sym-

metric group .Sj,.

If R denotes the real numbers, duality shows that/*: HíÍBh, R/Z)

—*HiiBg, R/Z) is nonzero for an infinite number of values of i. But,

if t is finite, H¡(w, R/Z) ~ií,_i(ir, Z), cf. [2, Chapter XII, Proof of

Theorem 6.6]. Therefore Theorem 1 has the following corollary.

Corollary 2. Let ir be a finite group and p a nontrivial subgroup of

w. Then the induced map H(ip, Z)—*Hiiir, Z) is nontrivial for an in-

finite number of values of i > 0.

Equivalently, we may say that the transfer ¿(it, p) : H{ip, Z)

—>.ä'(ir, Z) is nonzero for an infinite number of negative values of i

[2, Chapter XII, Exercise 8].

Note that the example ZP(ZZP+ZP shows that the restriction

map can be zero in all negative dimensions and the transfer zero in

all positive dimensions.

It would be interesting to have a purely algebraic proof of Theorem

1 but I know of no such proof.
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