THE NONTRIVIALITY OF THE RESTRICTION MAP IN
THE COHOMOLOGY OF GROUPS

RICHARD G. SWAN!

An unpublished result? of B. Mazur states that if = is any non-
trivial finite group then there is an 2> 0 such that Hi(r, Z) 0. It is,
course, trivial that Hi(r, 4) 0 for some w-module 4. The point of
Mazur’s theorem is that we can even take 4 =Z, the ring of integers
with trivial w-action. Mazur’s proof of this theorem is geometric. It
involves imbedding 7 in a compact Lie group G and studying the
Leray-Cartan spectral sequence of the covering G—G/r.

The purpose of this paper is to prove the following theorem which
generalizes Mazur's result.?

THEOREM 1. Let 7 be a finite group and p a nontrivial subgroup of w.
Then the restriction map i(p, 7): Hi(w, Z)—Hi(p, Z) [2, Chapter XII,
§8] is nonzero for an infinite number of values of 1> 0.

As a consequence of this theorem, we get a generalization of
Mazur’s result.

COROLLARY 1. Let 7 be a finite group and let p be a prime dividing
the order of w. Then H(w, Z) has a nonzero p-primary component for
an infinite number of values of 1> 0.

To see this we have merely to use Theorem 1, choosing for p any
nontrivial p-group in .

The proof of Theorem 1 will also be geometric. In fact, I will ac-
tually prove the following much more general theorem whose proof
must necessarily be geometric.

THEOREM 2. Let G be a compact, not necessarily connected Lie group.
Let H be a closed nontrivial subgroup of G, also not necessarily con-
nected. Let f: Bu—B g be the map of classifying spaces induced by the
inclusion map H—G [1, §1]. Then f*: Hi(Bg, Z)—H(Bg, Z) is non-
gero for an infinite number of values of 1.

REMARK. If H has an element of order p, the proof of this theorem
will also show that f*: Hi(Bg, Z,)—H(Bg, Z,) is nontrivial for an
infinite number of values of 7. If H is infinite, it will show that
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f*: Hi(Bg, Q)—H!(Bg, Q) is nonzero for an infinite number of values
of 7. Here Q is the field of rational numbers.

ProoF. By the Peter-Weyl theorem G has a faithful unitary repre-
sentation [4, Chapter VI, Theorem 4] and so can be imbedded in a
unitary group U(n). Also, H has a subgroup isomorphic to Z, for
some prime p. This is trivial if H is finite, but if H is infinite it con-
tains a torus [3, Exposé 23, Theorem 1] which clearly has a sub-
group isomorphic to Z,. Since the map Bz,—Buy factors through f,
it will be sufficient to prove the theorem for the case H~Z, and
G=U(l). (If H is infinite and we are trying to show that H:(Bg, Q)
—Hi{(Bg, Q) is nontrivial, it will suffice to consider the case where
G=U(n) and H is a circle group. The rest of the proof will be sub-
stantially the same.)

Assume then that H=Z,, G= U(l). Imbed H in a maximal torus
T of G. This can be done by taking any maximal torus T containing
a generator of H [3, Exposé 23, Theorem 1]. Now, H*(Br, Z) is
a polynomial ring over Z with generators &y, + + -, & H?*(Brp, Z). The
image of H*(Bg¢, Z) in H*(Br, Z) consists of all symmetric poly-
nomials in ¢, - - -, #; [1, §4]. Therefore to prove the theorem it will
be sufficient to find sufficiently many symmetric polynomials which
map nontrivially into H*(Bg, Z) under the map g* induced by
g: Bg—Bz. This map g is, of course, induced by the inclusion H—T.

Now, H*(Bpg, Z) is a polynomial ring over Z, with a single gener-
otor « € H*(By, Z) [2, Chapter XII, §7]. Therefore g*(t,) =r.a with
r,&Z,. I claim that at least one 7,50. Suppose to the contrary that
all r,=0. Then g*. H¥(By, Z)—H?*(Bg, Z) must be zero. Now
g: Bu—Br is a fiber map with fiber T/H [1, §1]. Of course, T/H is a
torus, being a connected abelian Lie group. The map g*: H*(Br, Z)
—H?(By, Z) is just the map EZ°—FEZ%0 in the spectral sequence of
this fibration. If it is zero, all elements of E2° must bound. Therefore
dy: EY'—EX® must be onto. This shows that T/H has rank I and
that Hy(T/H, Z) = E3" has a base {x,} such that dyx,=t,. (Of course
it is trivial that T/H has rank /, H being finite, but I have arranged
the proof so that it works for H=.S! without essential change.) Now
Ey*=H?*(T/H, Z) has a base x,x, with u <w. Since d; is a derivation,
do(x,%,) =t,®x,—1t,®x, in E2'=H?*By) @ H(T/H). Since these ele-
ments are linearly independent in E2!, d, is a monomorphism on
E® and so E3*=0. Also E3*=0 and E}'=0. Thus the spectral
sequence shows that H?(By, Z) =0 which is absurd.

Now let s be the number of indices v for which 7, 0. By renumber-
ing we can assume that 7,50 for v=1, 2, - - -, s and 7,=0 for v >s.
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Let x be the sth elementary symmetric function in 4, - - -, . Then,
for k>0,

g () = (III r,)ka"‘ = 0,

Since the x* are symmetric polynomials and have arbitrarily large
dimensions, this proves the theorem.

REMARRK. If ] is the smallest dimension of a faithful representation
of G over the complex numbers, the proof shows that f*: H¥(Bg, Z)
—Hi¥Bg, Z) is nonzero for some 2= 2! (since 2=2s and s</). This is
a best possible result if no further conditions are placed on G, H
and I. To see this for finite groups, let H be the cyclic group of order
» permuting p symbols and let G be the normalizer of H in the sym-
metric group .S,.

If R denotes the real numbers, duality shows that fx: H;(Ba, R/Z)
—H;(Bg, R/Z) is nonzero for an infinite number of values of 7. But,
if 7 is finite, Hi(w, R/Z) ~H;_y(w, Z), cf. [2, Chapter XII, Proof of
Theorem 6.6]. Therefore Theorem 1 has the following corollary.

COROLLARY 2. Let 7 be a finite group and p a nontrivial subgroup of
. Then the induced map Hi(p, Z)—H(w, Z) is nontrivial for an in-
finite number of values of 1>0.

Equivalently, we may say that the transfer i(w, p): Hi(o, 2)
—HBi(r, Z) is nonzero for an infinite number of negative values of
[2, Chapter XII, Exercise 8].

Note that the example Z,CZ,+Z, shows that the restriction
map can be zero in all negative dimensions and the transfer zero in
all positive dimensions.

It would be interesting to have a purely algebraic proof of Theorem
1 but I know of no such proof.
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