ON THE REALIZABILITY OF SINGULAR COHOMOLOGY GROUPS¹

DANIEL M. KAN AND GEORGE W. WHITEHEAD

Let $H_n(X)$ and $H^n(X)$ be the integral singular homology and cohomology groups of a space X and let \mathcal{G} be the category of abelian groups. Then it is well known that for every sequence $(A_1, A_2, \dots, A_n, \dots)$ with the $A_n \in \mathcal{G}$, there exists a space X such that $H_n(X) \approx A_n$ for all n > 0. We will show that the analogous statement for cohomology is false. In fact we prove:

THEOREM. There exists no space X and integer $n \ge 1$ such that $H^{n-1}(X) = 0$ and $H^n(X) \approx Z_0$ (the additive group of the rationals).

In the proof the following results will be used.

- (a) Z_0 has no nontrivial direct sum decomposition (trivial).
- (b) $\operatorname{Hom}(A, Z)$ is not divisible for any $A \in \mathcal{G}$ (trivial).
- (c)² Let $A \in \mathcal{G}$ and $\operatorname{Hom}(A, Z) = 0$. Then $\operatorname{Ext}(A, Z)$ is divisible if and only if A is torsionfree and $\operatorname{Ext}(A, Z)$ is torsionfree if and only if A is divisible.

PROOF. We will write Hom B and Ext B instead of Hom(B, Z) and Ext(B, Z). For any integer m > 1 consider the exact sequence

$$0 \to {}_{m}A \to A \xrightarrow{m} A \to A_{m} \to 0.$$

Because Hom $A = \text{Hom }_m A = 0$ application of the functor Ext yields the exact sequence

$$0 \to \operatorname{Ext} A_m \to \operatorname{Ext} A \xrightarrow{m} \operatorname{Ext} A \to \operatorname{Ext}_m A \to 0$$

and hence $\operatorname{Ext} A_m = {}_m(\operatorname{Ext} A)$ and $\operatorname{Ext} {}_m A = (\operatorname{Ext} A)_m$. For any torsion group T, $\operatorname{Ext} T = 0$ if and only if T = 0. Hence ${}_m A = 0$ if and only if $\operatorname{Ext} {}_m A = (\operatorname{Ext} A)_m = 0$ and $A_m = 0$ if and only if $\operatorname{Ext} A_m = {}_m(\operatorname{Ext} A) = 0$. The proposition now follows from the fact that a group $B \in \mathcal{G}$ is torsionfree if and only if ${}_m B = 0$ for all m > 1 and that B is divisible if and only if $B_m = 0$ for all m > 1.

(d) If $A \in \mathcal{G}$ is torsionfree and divisible, then A is a vector space over Z_0 (trivial).

Received by the editors March 25, 1960.

¹ This research was partially supported by the Office of Ordnance Research, U. S. Army.

² The first half of this proposition was proved by R. J. Nunke (Illinois J. Math. vol. 3 (1959) p. 230) without the restriction Hom(A, Z) = 0.

- (e) If $j: A \rightarrow B \in \mathcal{G}$ is a monomorphism, then $\operatorname{Ext}(j, Z) : \operatorname{Ext}(B, Z) \rightarrow \operatorname{Ext}(A, Z)$ is an epimorphism (trivial).
 - (f) $\text{Ext}(Z_0, Z)$ is not countable.

PROOF. The exact sequence $0 \rightarrow Z \rightarrow Z_0 \rightarrow Z_0/Z \rightarrow 0$ induces an exact sequence

$$0 \to \operatorname{Hom}(Z_0, Z_0) \to \operatorname{Hom}(Z_0, Z_0/Z) \to \operatorname{Ext}(Z_0, Z) \to 0.$$

As $\operatorname{Hom}(Z_0, Z_0) \approx Z_0$ is countable it suffices to show that $\operatorname{Hom}(Z_0, Z_0/Z)$ is not. For every sequence $a_1, a_2, \dots, a_n, \dots \in Z_0/Z$ such that $na_n = a_{n-1}$ for all n there clearly is a homomorphism $f: Z_0 \to Z_0/Z$ such that $f(1/n!) = a_n$. As the set of these sequences is not countable neither is $\operatorname{Hom}(Z_0, Z_0/Z)$.

PROOF OF THE THEOREM. Let X be a space such that $H^{n-1}(X) = 0$ and $H^n(X) \approx Z_0$. By the universal coefficient theorem

$$0 = H^{n-1}(X) \approx \text{Hom}(H_{n-1}(X), Z) + \text{Ext}(H_{n-2}(X), Z)$$

$$Z_0 \approx H^n(X) \approx \operatorname{Hom}(H_n(X), Z) + \operatorname{Ext}(H_{n-1}(X), Z).$$

Hence $\operatorname{Hom}(H_{n-1}(X), Z) = 0$, by (a) and (b) $Z_0 \approx \operatorname{Ext}(H_{n-1}(X), Z)$ and thus, by (c) $H_{n-1}(X)$ is torsionfree and divisible. But then (d), (e) and (f) imply that $\operatorname{Ext}(H_{n-1}(X), Z)$ is not countable which is a contradiction, q.e.d.

REMARK. It is not known whether in the theorem the hypothesis $H^{n-1}(X) = 0$ can be omitted, i.e., whether Z_0 can be a singular cohomology group at all.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY