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There are several well-known applications of Banach algebras to

questions in classical analysis, the most notable being the Wiener

Tauberian theorem. This theorem of course was given a classical

proof by Wiener, but the abstract proof in some ways appears simpler

and free of computations. The abstract proof has the disadvantage,

however, of not yielding a constructive method for obtaining the

object whose existence is asserted by the theorem, nor of giving

numerical bounds for certain quantities. The origin of this deficiency

lies in the use of the axiom of choice. Beurling has given a simple proof

of Wiener's theorem on reciprocals of absolutely convergent Fourier

series which takes advantage of Banach algebra ideas, but which is

purely classical and constructive. It, however, uses special properties

of Fourier series which are not used in the abstract proof. The Banach

algebra proof is essentially a restatement of the fact that in an algebra

with an identity either a set of elements is contained in a maximal

ideal or else 1 is a linear combination of them. This principle can be

applied to the algebras of absolutely convergent Fourier series, ab-

solutely convergent Taylor series, or functions continuous on the

disc, analytic in the interior. We prefer to illustrate our approach

by applying it to the third situation. Namely,2

Theorem. ///,-, i^i^n are continuous functions defined for \z\ £1,

analytic for \z\ < 1, which are never simultaneously zero, then there exist

functions gi, analytic in the disc and continuous on the boundary such

that ^Jigi=i-

We shall give a classical proof of this theorem which explicitly

yields the functions gi. This will be done by means of a fairly simple

program which we use to translate abstract proofs into classical

proofs.

Let A denote the algebra of functions/(z), analytic for \z\ < 1, con-

tinuous for \z\ ál, where ||/|| =sup |/[. We review first the standard
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abstract proof. We let I denote the ideal generated by /<, i.e. the set

of all functions of the form ¿2figi- We wish to show that 1 belongs

to I. We assume that 17aA. First, we extend I to a maximal ideal J,

invoking the axiom of choice. Second, we observe that / is closed.

Third, we form the quotient Banach algebra A/J. Fourth, we use

the Gelfand-Mazur theorem to deduce that there is a homomorphism

of A onto the complexes sending /, and hence /<, into zero. Finally,

we show that any such homomorphism is given by evaluation at

some point of the disc, which is a contradiction.

We note that step two above is accomplished by the following sim-

ple device, which we can expect to occur in any classical proof.

Lemma. If ||/|| < 1, iAew 1 —/ is invertible in A.

Proof. g= l-\-f-\-p-\- • • • clearly converges in A, and g(l —/) = 1-

Step four, the Gelfand-Mazur theorem, is proved by observing that

in a normed division algebra B, if z(EB, and z^\e for any complex

number X, where e is the identity element, then (z—Xc)_1 is an analyt-

ic function of X. Since as X tends to infinity this quantity approaches

zero, by Liouville's theorem it is identically zero which is absurd, so

that B coincides with the multiples of e. Liouville's theorem is in

turn proved by the Cauchy integral formula taken over a large circle.

With these remarks we shall now prove the theorem.

We now denote by I the closure of the ideal generated by /,-. If 1

belongs to I, then 1 is a linear combination of /,-, since if 1+A = ¿2g,fi,

\\h\\ < 1, then 1+A is invertible and so 1 = ¿2il + A)_1g¿/;. Assume then

that/; have no common zero in \z\ ££ 1. We first show that for every X,

there exists h in A such that (z —X)A=1 modulo /. If |X| >1, then

l/(z—X) belongs to A and so we may take A equal to it. If |X| ÁÍ,

then we have say /i(X) 5^0. Now the polynomials in z are dense in A,

a fact which is used in the last step of the abstract proof, and may be

proved by taking Fejér means. Thus there is a polynomial/(z), such

that ||/— /i|| < |/i(X) | /4. For some k in A we clearly have

(i) (*-x)jK*)=/(*)-/(x),

or

(2) (z - X)A(z) = - /(A) + if{z) - fiiz)) modulo I.

Since ||/—/i|| < |/(X)|, the lemma shows that the right side of (2) is

invertible in A, so that for some A we have

(3) (z - X)A(z) = 1 modulo /.

If (3) holds for a certain X, then if we set
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(4) h(s, z) = h(z)(i -(s- X)Â(z))-1

for

(5) |S-X|   <p||-S

then h(s, z) is well-defined and

(6) (z — s)h(s, z) = 1 modulo I

since

(z - s)h(s, z) = [(z - X) - (s - \)]h(z)(l -(s- X)Â(z))-i

= (1 - (s - \)h(z))(i -(s- X)Ä(z))-1

= 1.

In the neighborhood defined by (5), for each fixed z, h(s, z) is clearly

analytic in s. We have now essentially copied the first part of the

proof of the Gelfand-Mazur theorem.

Let r denote the circle | s| =3. We form a fine grid so that the in-

terior of T is the union of regions C¡, bounded by simple closed curves

73-, and so that for each C¡, we have a function h¡(s, z) such that (6)

holds for s in the neighborhood of C,. We orient y¡ coherently with Y.

Set

_^    1    r     hj(s, z)
(7) r(*)-Er:       -^^ds.

i     ¿mJ y s

We assume here that no y¡ passes through the origin. If G is the

unique C¡ containing the origin clearly

(8) T(z) = h(0, z),

and

(9) zT(z) =■ 1.

On the other hand along each curve y,-, we have at least two func-

tions hj^s, z) and A,-2(s, z) defined. But,

(10) (z - s)(hh(s, z) - hJt(s, z)) m 0

so multiplying by &/,($, z) and using (6)

(11) hh(s, z) s ht¿s, z).

Hence we see that

(12)
1    /* ds

r(*)- — I (s-*)-1-
¿m J r s
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The right side of (12) is zero for \z\ £1; hence TÇLI, zTE.1, but

zT— lG-f by (9), so lG-f- We note that since / is closed, the integra-

tion of (11) to prove (12) is justified.

The above proof will also serve as a model to prove Wiener's

theorem on the reciprocal of absolutely convergent Fourier series. It

can be used to get the following bound:

If/(z)= ¿2ñ~-« cnzn, and ¿2\n\>N \cn\ < a/4, where a = min |/(z)|,

then || 1//|| can be bounded in terms of a and 2^i«k¡v| ncn\.

We now turn to a theorem of Wermer [3], which was given a short

abstract proof by Hoffman and Singer [2].

Theorem. Let f be a continuous function on \z\ =1 with Fourier

series ¿2ñ=-*> cnzn. If for some «<0, c„^0, then every continuous func-

tion on \z\ =1 can be uniformly approximated by polynomials in z andf.

We give a very simple proof which can be regarded as a translation

of the proof in [2], It cannot be said to be simpler, but avoids the

axiom of choice and is constructive in the same sense as our previous

proof. We may assume that for some «>0, c_„= 1. The Fourier series

for z"/ has constant term 1, and since the polynomials in z and z are

dense in the space of all continuous functions we have that znf may be

approximated by such a polynomial so that

(13) z"f = 1 + zgi + z g2 + A

where gi and g2 are polynomials in z, and A is a continuous function

such that |A| <l/2. Assume

(14) | zg2 — z g21   ^ M

for some constant M. Since the quantity occurring in (14) is purely

imaginary, we have for all 5>0,

(15) | 1 + Sizg2 - J ft) |   £ 1 + S2M2.

Substituting from (13) we have

(16) | 1 + S + ziSg2 + 5gi - 5z"-1/) + 5A |   £ 1 + 52M2

or

(17) | 1 + 5 + zj |   £ 1 + S2M2 + 5/2

where j is a polynomial in z and /. For sufficiently small 5,

(18) 1 + 52M2 + 5/2 < 1 + 5

so that by (17) and the lemma, zj is invertible in the algebra B which

is the uniform closure of polynomials of z and /, so that finally 1/z
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= zEB, and since zEB, B is the algebra of all continuous functions

on the circle \z\ =1.
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