ON THE SUM OF THE ELEMENTS IN THE CHARACTER TABLE OF A FINITE GROUP

LOUIS SOLOMON

In this note we prove an inequality governing the sum of the elements in the character table of a finite group.

THEOREM. Let \mathfrak{G} be a finite group of order g. Let χ_1, \dots, χ_k be the absolutely irreducible characters of \mathfrak{G} and let G_1, \dots, G_k be representatives for the classes of conjugate elements. Let h be the order of a maximal abelian normal subgroup of \mathfrak{G} and let

$$s = \sum_{i=1}^k \sum_{j=1}^k \chi_i(G_j)$$

be the sum of the elements in the character table. Then s is a rational integer and

$$h \leq s \leq g$$
.

We have equality s = g if and only if \mathfrak{G} is nilpotent of class two, and equality s = h if and only if \mathfrak{G} is abelian.

PROOF. Let $G \rightarrow \mathfrak{P}(G)$ be the permutation representation of \mathfrak{G} defined by inner automorphisms

$$\mathfrak{P}(G)X = GXG^{-1} \qquad G, X \in \mathfrak{G}$$

and let ν be the character of \mathfrak{P} . We may write $\nu = \sum_{i=1}^k c_i \chi_i$ where the c_i are non-negative rational integers. Since $\nu(G_j)$ is the order of the normalizer of G_j we have $\nu(G_j) = g/k_j$ where k_j is the number of conjugates of G_j . It follows from the orthogonality relations that

$$c_i = \frac{1}{g} \sum_{G \in \mathfrak{G}} \nu(G) \chi_i(G) = \sum_j \chi_i(G_j).$$

Let x_i be the degree of χ_i . Since the c_i are non-negative and ν is a character of degree g, it follows that

$$g = \sum_{i} c_{i} x_{i} \ge \sum_{i} c_{i} = s.$$

Thus s is a rational integer and $s \le g$. Equality holds if and only if $c_i = 0$ whenever $x_i > 1$. Thus equality holds if and only if all the irreducible constituents of ν have degree one. We shall see that this is the case if and only if the commutator subgroup \mathfrak{G}' is included in the

Received by the editors December 5, 1960.

center \mathfrak{Z} of \mathfrak{G} , and hence if and only if \mathfrak{G} is nilpotent of class two. If all the irreducible constituents of ν are characters λ of degree one, then $\lambda(G) = 1$ for all $G \in \mathfrak{G}'$ implies $\nu(G) = g$ for all $G \in \mathfrak{G}'$ and thus $\mathfrak{G}' \subseteq \mathfrak{Z}$. Suppose conversely that $\mathfrak{G}' \subseteq \mathfrak{Z}$. Let \mathfrak{X}_i be a matrix representation of \mathfrak{G} with character χ_i . Then Schur's Lemma implies $\mathfrak{X}_i(Z)$ is a multiple of the identity matrix for all $Z \in \mathfrak{Z}$ and thus $\chi_i(Z) = \omega_i(Z)x_i$ where $\omega_i(Z)$ is a root of unity. Thus for $X, Y \in \mathfrak{G}$ we have

$$g = \nu(XYX^{-1}Y^{-1}) = \sum_{i} c_{i}x_{i}\omega_{i}(XYX^{-1}Y^{-1}).$$

On the other hand $g = \sum_{i} c_{i}x_{i}$. We use the following familiar property of roots of unity: If $\epsilon_{1}, \dots, \epsilon_{r}$ are roots of unity and $\sum_{i} \epsilon_{i} = r$ then $\epsilon_{i} = 1$ for $i = 1, \dots, r$. Thus, in our case, $c_{i} \neq 0$ implies $\omega_{i}(XYX^{-1}Y^{-1}) = 1$ and hence $\chi_{i}(XYX^{-1}Y^{-1}) = x_{i}$ for all X, $Y \in \mathfrak{G}$. From the formula [2]

$$\chi_i(X)\overline{\chi_i(X)} = \frac{x_i}{g} \sum_{Y \in \mathfrak{G}} \chi_i(XYX^{-1}Y^{-1})$$

we see that $c_i \neq 0$ implies $|\chi_i(X)|^2 = x_i^2$ for all $X \in \mathfrak{G}$ and then $g = \sum_{X \in \mathfrak{G}} |\chi_i(X)|^2 = gx_i^2$ shows x = 1. Thus all the irreducible constituents of ν have degree one and s = g.

To show that $s \ge h$, let $x = \max_i x_i$. Then a theorem of Itô [1] shows $x \mid g/h$. But then, since $c_i \ge 0$ we have

$$s = \sum_{i} c_{i} \ge \sum_{i} c_{i} \frac{x_{i}}{x} = \frac{g}{x} \ge h.$$

Clearly if \mathfrak{G} is abelian s=h=g. Conversely if s=h then $x_i=x$ whenever $c_i\neq 0$. Thus ν is a linear combination of characters of degree x. But ν is the character of a permutation representation and hence contains the principal character as an irreducible constituent. Thus x=1 and \mathfrak{G} is abelian. This completes the proof.

REFERENCES

- 1. N. Itô, On the degrees of irreducible representations of a finite group, Nagoya Math. J. vol. 3 (1951) pp. 5-6.
- 2. B. L. van der Waerden, Modern algebra, New York, Ungar, 1950, vol. 2, p. 190.

HAVERFORD COLLEGE