
CLASSES OF p-VALENT STARLIKE FUNCTIONS
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1. Introduction. The winding number associated with a starlike

function exhibits a certain monotonicity property (Theorem 1 be-

low). This property is used to show that several alternatives to the

definition of the class S(p) of p-valent starlike functions are trivial.

From it there also follows a simple and explicit example of a coeffi-

cient problem in S(p) with no solution. This situation, which Good-

man has treated in some detail [2], is interesting since such problems

always have solutions in the schlicht case [3; 4].

Let S be the class of all functions/(z) =z-r-a2z2+a3z3+ ■ • • which

are regular and schlicht in \z\ < 1 and let S* be the subclass of 5 con-

sisting of those functions whose image domains are starshaped with

respect to the origin. For a given positive integer p let S(p), the class

of ^-valent starlike functions, be the class of all functions/ to which

there corresponds some r, 0<r<l, such that for any z, r<|z| <1,

Re{zf (z)/f(z)} ^0and(l/2r)J? Re{zf'(z)/f(z) }dt = p,z = qeil,foreach
q, r<q<l. This integral is just the number of zeros of/in the interior

of the circle | z\ =q and hence/ has p zeros in the open unit disk, and

is in fact p-valent there [2]. In a certain sense the classes 5(1) and

S* coincide, i.e., iffES* then/GS(l) and iffES(l) then///'(0) ES*.

2. The winding number. If Q is a path in U={z: \z\ <l] and /is

analytic in U, \etf(Q) denote the path which is the image of Q under

/ and which has the induced orientation. The properties of the wind-

ing number

1    f     f'(z)
n[f(Q), a] = — 6    -^-dz

2rtJ q f(z) — a

are well known. In this paper/ will lack singularities and Q will be a

circle. Hence n[f(Q), a] will be the number of times/ assumes the

value a in the open disk bounded by Q.

If a function / is regular at a point a ^ 0 and Re {zf'(z)/f(z)} ^ 0 for

all z in some neighborhood M of a then the fact that Re{z/'(z)//(z)}

is harmonic in some neighborhood NEM of a implies that

Re{af (a)/f(a)} >0 and, consequently, also that/'(a)?íO. From this

fact, which will be of frequent use below, follows
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Theorem 1. Let the function f be regular in the open unit disk U and

zero at the origin. Suppose there is an r = r(/), 0<r<l, such that

(i) fiz)5¿0 and (ii) Re{z/'(z)//(z)} 2:0, whenever r<|z| <1. Then for

any q, r<q<l, and associated Q—{z: \z\ =q) and any aEU, the

winding number n[fiQ), sfia)] is a decreasing function of the positive

real variable s as long as sfia)EfiU).

Proof. Let /( Î7) be the image of U under /. The winding number

n[fiQ), sfia)] is a nonnegative integer (hence real) and is constant

throughout each component of /(t/) determined by fiq). Therefore,

as has just been noted, Re{z/'(z)//(z)} =5 arg/(z)/d arg z>0 when-

ever r < \z\ <1, i.e. arg/ is a strictly increasing function of arg z for

zEQ- Furthermore the fact that/is never zero in {z:r<|z| <l} and

has only a finite number m>0 of zeros in {z: |z| £jr} implies, with

the help of the argument principle, that arg/(z) increases by 2mir as

z makes one positively directed circuit of Q. Thus Arg/(z) takes on

each value b, 0^b<2tr precisely m times as z traverses Q.

If aEQ is arbitrary it is apparent that the angle d from the radius

vector/(a)—0 to the vector tangent to fiQ) at fia) lies in the interval

O<0<7T. The geometric meaning of the winding number now makes

it obvious that its value falls as fiQ) is crossed in an outward direction

and in fact that this decrease is just some integer n, l^n^m, which

is the number of points of Q mapped into/(a) by/. The proof of the

theorem is now complete.

3. The class M*.
Definition 1. Let p be fixed, £2:1. Suppose the function A(z)

= zPJrbp+izp+l-T-bp+iZp+2-\- • • • is regular in U and satisfies the con-

ditions

(i) h is p-valent in U, and

(ii) there exists r = r(A), 0<r<l, such that Re { zä'(z)/ä(z) } 2:0

whenever r<|z| <1.

Then h is called a function of class Mp*.

Manifestly if hEM* then for any q, r<q<l, and Q={z: \z\ =q)

it must be that n[hiQ), 0]=p, i.e., (l/27r)/02' Re{zÄ'(z)/A(z) }dt = p,

z = qe", so that hESip). Thus M*CSip). Let (5*)" be the class of

pth powers of functions of S*. Then

Theorem 2. Mp* = (5*)", P = l,2, 3, •••.

Proof. Choose any function

*(«) = zp + bp+izf+i + bp+iZ"*2 + ■ ■ ■

= z"(l + bp+iz + bp+iz2 +•••) = z"giz)
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of M*. Note that g is regular and nonzero in U. Hence so is [g(z)]1/p.

Since g(0) = l the function [g(z)]1/p can be assumed to be 1 at the

origin. Set f(z)=z[g(z)]l'" = z+ • • • . Then \j(z)]p = h(z). Further-

more, if zEU, zh'(z)/h(z)=p(zf'(z)/f(z)) whence, since p>0,

Re{z/'(z)//(z)} 2:0 whenever r(h)=r<\z\ <1. Hence, just as above,

arg/(z) is a strictly increasing function of arg z for zEQ. Therefore

f(Q) is a simple closed curve and by Darboux's Theorem/is schlicht.

Thus/£S*, and consequently MP*E(S*)P.

If, now,/(z) =z+a2z2+a3z3+ ■ ■ • is a member of S* and the func-

tion h(z) =zp+ • • • is defined by setting h(z) = \f(z) ]p then certainly

hEM*, for/ can take on each pth root of a given number at most

once in U, showing that h satisfies condition (i). That h satisfies

condition (ii) has already been shown in the first half of this proof.

Therefore (S*)PEMP* and the theorem is proved.

4. The class N*.

Definition 2. Let p be fixed, p ^ 1. Let m be an integer, l^m^p.

Suppose the function h(z)=zm+bm+izm+1+bm+2zm+2+ ■ • • is regular

in U and satisfies the conditions

(i) h is at most ^-valent in U, and

(ii) Re{zh'(z)/h(z)} ^0 for all zE U.
Then h is called a function of class Np*.

The relationship of the class 7VP* to S(p) is made plain by the

following

Theorem 3. N* = S*U(S*)2U ■ ■ ■ \J(S*)P, p = l, 2, 3, ■ ■ ■ .

Proof. Consider an arbitrary hEN*. The function h is of the form

h(z)=zm+bm+izm+1+bm+2zm+2+ • • • for some integer m, í^m¿p.

To show that hEM* = (S*)m it clearly suffices to verify that h is

m-valent in U. Consider any point a^O of U. If A(a)=0 then, in

some neighborhood of a, h(z) = (z — a)"g(z) where lSjw and g(a)9£0

(for the identically zero function is not a member of AT/). Then

zh'(z)/h(z)=na/(z — a)+n+zg'(z)/g(z). Certainly n+zg'(z)/g(z) is

analytic at z = a since g^^O and therefore zh'(z)/h(z) has a pole of

order 1 at z = a in contradiction to condition (ii) in the hypothesis

concerning h. Thus h can be zero in U only at the origin. Hence for

any q, 0<q<l, and associated Q={z: \z\ =q] and G= {z: \z\ <q]

it is apparent that n[h(Q), h(0)]=n[h(Q), 0]=m. Theorem 1 now

guarantees that n[h(Q), h(z)]^m whenever zEG. Since q can be

arbitrarily close to 1, h must be w-valent in U. Thus NP*ES*

U(5*)2U • • • \J(S*)p.

For m = l, 2, 3, ■ ■ ■ , p the proof that (S*)mEN* is the same as
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the corresponding part of Theorem 2. This establishes the opposite

inclusion and therewith the theorem.

5. The class 5*.
Definition 3. Let p — \, 2, 3, ■ ■ ■ . Suppose the function /(z)

= zJcaiZ2-r-a&lJr • • •   is regular in U and satisfies the conditions

(i) / is at most ¿»-valent in U,

(ii) there exists some o£/(î/) such that/(z)=a exactly p times

in U, and

(iii) there exists r = >•(/), 0<r<l, such that Re{z/'(z)//(z)} 2:0

whenever r < \z\ <1.

Then / is called a function of class Sp*.

Evidently S* = 5* which, in turn, is in the sense above alluded to

just equal to 5(1). But not even in this sense is Sp=Sip). However

Theorem 4. S*ESip), p-1, 2, 3, • • • .

Proof. HfES* then all that must be verified to show thatfESip)

is the existence of a d, 0<d<l, such that whenever ¿<g<l

4/(0,O]=l^2TRe|

z = qeil.

There are some o£ U, some number k, 0<fe<l, and a circle

K={z: \z\ =k} contained in U such that n[fiK), fia)]=p. Let

c, 0<c<l, be the largest of the moduli of the (at most p) points Zj

of i/at which /(zj) =0. The number r — rif) is already associated with

/. Define d = max{r, k, c). Then for any q, d<q<i, and associated

Q= {z: \z\ =q} it is true that n[/(Q),/(a)] = p. The fact that/is at

most ^-valent in U implies that n[fiQ), 0] ^p. Hence an application

of Theorem 1 to / yields p = n [fiQ), fia) ] á «[/((?), 0 ] ^ p. Since q can

be arbitrarily close to 1 this shows that/£S(£), i.e. SpESip), which

completes the proof.

If g is any function of Sip) having a simple zero at the origin then

g can be written giz) =aiZ+a2z2+<i3Z3+ • • • . It is now a trivial mat-

ter to verify that

g(z)       g(z) ,   «2   „ ,   a3   .  .
-=-= z-i-z2 -\-z8+ • • •

ax        g'iO) ai ai

is an element of S*. And in this sense, the same as with the classes

5(1) and 5* = Si* (i.e. except for normalization) the class S* is just

the class of all functions of Sip) having a simple zero at the origin.

■dt = p,
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It is clear that for p = 2, 3, 4, • • •  no function of S* is the power of a

(schlicht) starlike function.

The following theorems give an example of a coefficient problem

which has no solution.

Theorem 5. Let p be fixed, p^2. If k is any complex number such

that 2 — 1/p < | k\ then the function f(z) =z+kzp is a member öf Sp*.

Proof. The function / has p zeros in U and is obviously p-valent

in U. Also, for \z\ =1,

(zf'(z)\ I (1 - p)z) p-1
Re{-^—-\  = Re<p +-— V ̂ p- yV—

\f(z) ) Y       z+kzp)       '      1*1-1

= —^— ( 1*1   -2 + —)> 0,
*-lV p)

which persists, by continuity, for r<|z| <1, for some r, 0<r<l.

Therefore fE S*.

Theorem 6. Let p be fixed, p^2. Let n^p be chosen, n^2. Then to

any complex number q there corresponds a function f(z)=z+a2z2

+a3Z3+ • • •  of Sp* for which a„ = q.

Proof. If q = 0 the theorem is an immediate consequence of Theo-

rem 5. So consider arbitrary fixed nonzero q, and let b be any complex

number whose modulus satisfies the inequality l + |ç| <P+|<z|

+ |w — p\ -\q\ <\b\. Now consider the function f(z) =z+bzp+qzn. In

consequence of the above inequality and a theorem of Pellet [l,

p. 10] on roots of polynomials it follows immediately that n[f(C), 0]

= p, where C={z: \z\ =l}. The fact that max2Ec |z/'(z)//(z) — p\

<1 <p implies, just as in the proof of Theorem 5, that there exists d,

0<d<l, such that Re{z/'(z)//(z)} ^0 whenever d<\z\ <1. Since/

takes on only p zeros in U there exists /, 0</<l, such that/(z)?^0

whenever t< \z\ <1. Set r = max(d, /). Then 0<r <1 and Theorem 1

is applicable to/. Hence if r<x<l and X= {z: \z\ =x] the winding

number n[f(X), sf(a)] is a decreasing function of the positive real

variable 5 whenever sf(a)Ef(U). Thus p = n[f(Q, 0]=n[f(X), 0]
^n\f(X), k] for any kEf(U). But x can be arbitrarily close to 1.

Therefore fES* and the theorem is proved.

Consideration of the classes of ¿»-valent starlike functions treated

above has given rise to the following question concerning a decom-

position for elements of S(p). Given any fES(p), does/ have a repre-

sentation f=gh where gES*, hE(S*)p-^
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