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Introduction. In a series of papers [l-4] Halmos introduced the

theory of homogeneous polyadic algebras. These polyadic algebras

correspond to first order calculi in which there is only one sort of

variables. The purpose of this paper is to introduce the theory of

nonhomogeneous polyadic algebras, the latter algebras corresponding

to first order calculi in which there are several sorts of variables; these

calculi were first treated in [6; 7]. In §1, we develop the general

theory; in §2, we offer a representation theorem which proof, even

in the homogeneous case, is of some novelty; finally, in §3, we show

that, to a certain extent, the theory of finite-sorted nonhomogeneous

algebras can be reduced to that of homogeneous algebras.

0. Notation. The purpose of this section is to set down the notation

to be used throughout. However, we shall restrict attention to the

notation which is of some novelty and which is more or less proper

to this paper. For the standard notation concerning Boolean algebras

and homogeneous polyadic algebras, we refer to the four papers of

Halmos [l-4]. Let I be a nonempty set. For our purpose, it will be

convenient to view a partition of J as a mapping U from a set M to

subsets Ua of I such that the union of the sets Ua, as a runs through

M, is I and such that Uar\Uß= 0 whenever a^ß; the set M shall

be called the domain of U. For the remainder of this section, the

symbols /, U and M shall retain the meaning they have just been

assigned. If X is a mapping from I to sets such that Xt = Xj whenever

i and j belong to the same set Ua, then we shall denote by Xj the

cartesian product of the sets A^,- as * runs through I. If i and j are

elements in I, then the symbol (j/i) shall denote the transformation

that sends * onto/ and all other elements onto themselves. Previously,

in [2 — 4], this transformation was what is denoted now by ii/j).

The advantage of this new notation is that the "cancellation law"

holds: S(J/k)Sik/i)p = S(J/i)p whenever p belongs to some polyadic

algebra and i, j and k are variables so that p is independent of *. A

transformation r on I shall be called a XJ-transformation if r(i/a)

QUa whenever aEM. Let t be a {/-transformation on I; r* shall

denote the mapping of X¡ into Xi induced by r. By definition, (t*x)<

= xrl- for all x in X¡ and all i in /. If x and y are in X¡ and if / is a

subset of I, then x=y mod / shall mean that x¿ = y¿ for * not in J.
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The letter 0 shall be used to denote the two-element Boolean algebra.

On one occasion we shall use the McNeille completion of a Boolean

algebra; more precisely, if B is a Boolean algebra, then there exists a

unique complete Boolean algebra A so that 5 is a subalgebra of A and

every element in A is the supremum of some subset of B. We shall

refer to A as the McNeille completion of B. For the details, see [5].

1. Elementary theory. In this section, we introduce the basic con-

cepts of the theory of nonhomogeneous algebras. We start by giving

the definition of a nonhomogeneous polyadic algebra. If M is a non-

empty set, then an M-sorted nonhomogeneous polyadic algebra is a

quintuple (A, I, U, S, 3) where A is a Boolean algebra, lisa set, U is a

partition of I with domain M, S is a mapping from [/-transformations

to endomorphisms of A, and 3 is a mapping from subsets of I to

quantifiers of A such that

(Pi) if Ô is the identity transformation on I, then S(h) is the identity

endomorphism,

(P2) S(t<x) = S(t)S(<j) whenever t and <x are U-transformations on

/,

(Ps) if 0 is the empty subset of I, then 3(0) is the discrete quanti-

fier,

(P4)   B(J^JK) = 3(J) B(K) whenever / and K are subsets of /,

(P6) if t and <r are [/-transformations on I, and if r = cr outside J

where / is a subset of I, then S(t) 3(7) =S(a) 3(7),

(Pe) if t is a [/-transformation on /, if J is a subset of / and t is

one-to-one on r~l(J), then 3(J)S(t) =S(t) SO-"1/).

The algebra (A, I, U, S, 3) shall be referred to as an (I, U)-

algebra when the explicit mention of M and of the operator mappings

5 and 3 does not seem necessary. As in the homogeneous case, we

shall often commit the solecism of identifying (A, I, U, S, 3) with

A itself. Elements of M will be called sorts and they shall be denoted

by small Greek letters. Elements of / will be called variables and the

notation for variables, subsets of variables, and the operator map-

pings shall be the same as in the homogeneous case. A variable will

be called of the sort a if it belongs to the set Ua. Observe that if M

is a singleton, then A is an ordinary homogeneous /-algebra. It is also

clear that any homogeneous /-algebra becomes, in a natural way, a

nonhomogeneous algebra after declaring all variables of / to be of

the same sort. The a-degree of A is the cardinality of the set Ua ; the

degree of A is the smallest a-degree of A as a runs over M. The con-

cepts of independence, support and local-finiteness are defined as in

the homogeneous case. The elementary algebraic theory for non-
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homogeneous algebras (i.e., definitions of subalgebras, ideals, quo-

tient algebras, etc.) is entirely similar, up to trivial and obvious

modifications, to the corresponding theory for homogeneous algebras

(see [2, §8]). Consequently, we shall not develop it here and we

shall make free use of it in the sequel. One of the more efficient ways

to construct nontrivial examples of nonhomogeneous algebras is to

refer to functional algebras. The notion of functional algebra is also

needed to formulate and prove the representation theorem for non-

homogeneous polyadic algebras. Let I be a set, U a partition of I with

domain M, X a mapping from I to sets Xt such that X, = Xj when-

ever i and/ belong to the same set Ua, and B a Boolean algebra. If p

is a function from Xi to B and if t is a [/-transformation on I, define

a function Sir)p from Xj to B by S(r)/>(x) =/>(r*x) whenever x be-

longs to X¡. Then 5(t) is a Boolean endomorphism (under pointwise

operations) of the Boolean algebra of all functions from X\ to B.

Moreover, if 4 is a Boolean algebra of functions from Xj to B and

if Sir) sends 4 into 4, then 5(t) is a Boolean endomorphism of 4.

To each subset J oí I and each function p from X¡ to B, we associate

a function 3iJ)p from Xt to B by 3(Jj£(x) = V{/>(y): x = y mod /}

whenever this last supremum exists for all x in X¡. If 4 is a Boolean

algebra of functions from Xj to B and if 3(/)£ is defined and belongs

to 4 for all pin A, then 3(7) is a quantifier of 4. A Boolean algebra

4 of functions from Xi to B is a functional M-sorted nonhomogeneous

ipolyadic) algebra if Sir)p belongs to 4 and 3(/)£ is defined and be-

longs to 4 whenever t is a [/-transformation on 7, J is a subset of I

and p belongs to 4. We shall say then that 4 is an Af-sorted 5-valued

(7, [/)-algebra over X. We shall also use expressions such as "4 is a

functional nonhomogeneous algebra" or "4 is a functional (/, [/)-

algebra" etc. We shall indicate now how the concept of constant (see

[2, §12]) is defined in nonhomogeneous algebras. Let 4 be an As-

sorted (7, Í/)-algebra and let a be a sort. An a-constant of 4 is a map-

ping c from subsets / of Ua to endomorphisms Sic/J) of 4 so that

(ci) Sic/cp) is the identity endomorphism,

(ci) Sic/JUK) = Sic/J) Sic/K),

(c3) Sic/J)3iH)=3iH)Sic/J-H),

id)   3iH)Sic/J)=Sic/J)3iH-J),

(c.) 5(c//)5(t)=5(t)5(c/t-1/),

whenever /, AT are subsets of [/„, 7/ is a subset of 7 and r is a [/-

transformation on I. We shall also say that c is a constant of the sort

a. The concept of richness is formulated (with the obvious modifica-

tions) exactly as in the homogeneous case.
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2. Representation. The proof of the representation theorem for

(locally finite) homogeneous algebras (of infinite degree) given in [2 ]

can easily be adapted to a proof of the corresponding fact for non-

homogeneous algebras. There is no point in repeating the details of

that particular proof here. The purpose of this section is to offer a

proof which, even in the homogeneous case, is of some novelty and

is shorter than the original one. The proof is based on the following

two lemmas.

(2.1) Lemma. // A is an M-sorted locally finite (I, U)-algebra of

infinite degree, p an element of A and i a variable of the sort a, then

3(i)p=V{S(j/i)P:jEUa}.

Proof. Fix the variables of I—Ua and apply [2, 10.5] to the

(homogeneous) i/a-algebra so obtained.

(2.2) Lemma. Suppose A is an M-sorted B-valued (I, U)-algebra

over X. If B is complete and if A is the algebra of all finite-dimensional

functions from Xj into B, then A is rich.

Proof. It suffices to show that if p has support i, then there exists

a constant c of the same sort as i so that B(i)p = S(c/i)p. Suppose p

has support i where i is of the sort a. Let Xt = Z and let p~ be the

natural function from Z into B induced by p. Well order the set Z

and let e be the first element of Z under that well-ordering. Define a

mapping f from Z into B by f(e) = p(e), and f(a) = p(a) — V {f(b) : b <a}

if a¿¿e. Define another mapping q from Z into B by q(e)=f(e)\/po

where p0 is the complement of V {p(a) : aEZ}, and q(a) = f(a) when-

ever a 9e e. Let q be the unique element of A with support * and so that

g(x) = q(xi) for all x in X¡. Define a mapping / from A into A by

fpi= 3(i)(pi/\q) for all elements pi in A. It is a straightforward mat-

ter to check that / is actually a Boolean endomorphism of A and

that there exists a unique a-constant c of A so that S(c/i) =/; more-

over, 3(i)p = S(c/i)p. This completes the proof of the lemma.

(2.3) Theorem. // A is a locally finite nonhomogeneous algebra of

infinite degree, then A is isomorphic to a functional algebra; if A is

simple, then A is isomorphic to a O-valued functional algebra.

Proof. To prove the first part, suppose A is an Af-sorted (/, [/)-

algebra and define a mapping X from / into subsets of / by X,= Ua

whenever i is of the sort a. Let A be the Boolean algebra of all finite-

dimensional functions from Xj into A and define a mapping / from

A into .4 by (fp)(r) =S(r)p for all r in Xi (note that a [/-transforma-

tion on / is an element of Xi and conversely). Using (2.1), it is easy
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to check that f(A) is a functional nonhomogeneous polyadic algebra

and that/ is an isomorphism from A onto f(A). The latter proof is

an adaptation to the nonhomogeneous case of [2, 10.9]. To prove

the second part, assume A is simple. It suffices to prove that A can

be embedded in a rich algebra. This follows from the fact that the

quotient of a rich algebra is rich and that a simple rich algebra is

easily seen to be isomorphic to an 0-valued functional algebra. To

prove that A can be embedded in a rich algebra, we may assume that

A is a 73-valued functional algebra over X; this follows from the first

part of the theorem. Let B be the McNeille completion of B and let

A be the functional algebra of all finite-dimensional functions from

Xi into B. Since B preserves the suprema of B (i.e., if a subset of B

has a supremum in B, then it has the same supremum in B), it fol-

lows that i is a nonhomogeneous polyadic subalgebra of A. By

(2.2), Ä is rich. This completes the proof of the theorem.

3. The homogeneous transform of a finite-sorted nonhomogeneous

algebra. The purpose of this section is to show that, to a great extent,

the theory of finite-sorted nonhomogeneous algebras can be reduced

to that of homogeneous algebras. We introduce first a definition. If

M is a nonempty set, then an M-sorted homogeneous polyadic algebra

if a quintuple (A, I, F, S, 3) where (A, I, S, 3) is a homogeneous

polyadic algebra and F is a mapping from M to 1-place predicates

of A such that

(3.1) 3(i)Fa(i) = 1,

(3.2) Fa(i) A Fß(i) = 0,

whenever i belongs to / and a, ß are distinct elements of M, and

(3.3) V{Fa(i): a E M] = 1 for all variables i.

Condition (3.3) implies that the supremum indicated exists and more-

over is equal to 1. For the remainder of this section, we assume that

M is a fixed nonempty finite set. It is now our purpose to introduce

a technique which allows to reduce the theory of M-sorted non-

homogeneous algebras to the theory of M-sorted homogeneous alge-

bras. To be explicit, let (A, I, U, S, 3) bean M-sorted locally finite

nonhomogeneous algebra of infinite degree. A U-predicate of A is a

mapping P from I1 into A so that S(t)P((t)=P(to) for all trans-

formations o* on / and all [/-transformations r on /. Let A be the set

of all finite-dimensional [/-predicates of A ; A is a Boolean algebra

under point-wise operations. We shall make A into an M-sorted

homogeneous algebra (Ä, I, F, S, i). The mapping S is the functional
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transformation mapping. More explicitly, if t is a transformation on

I, then (5(r)P)(<r) =P(t*ct) for all P in 4 and all transformations a

on 7. It is easy to check that 5(t) maps 4 into 4. The operator 3

is defined as follows. Let i be a variable, P an element of 4, / a finite

support for P and a a transformation on I. For each sort a, let ia

be a variable in Ua so that i„ is not in <r(/), and let oa be a trans-

formation on I so that oa = o mod t and <r„(i) =ia. Now let (a(i)P)(<r)

= V{3(4)P((r«):aGM}.
It is a straightforward matter to check that this definition is un-

ambiguous (i.e., independent of the choice of the support J and of the

variables ia) and that i(¿) is a mapping from 4 into 4. Using (2.1),

it is also easy to see that â(î) is actually the ¿-cylindrification. It fol-

lows immediately, that for every subset J of I, the J-cylindrification

3(7) exists on 4. Therefore (4, 7, S, i) is a functional locally finite

polyadic algebra (4-valued and over I) and hence a homogeneous

polyadic algebra. In order to make 4 into an M-sorted homogeneous

algebra, the mapping F still needs to be defined. This is done as

follows: for each j in 7 and each a in M, let Pa(i)(r) = 1 when ri is of

the sort a and Faii)ir) =0 otherwise. Then (4, I, F, S, 3) becomes

an M-sorted homogeneous algebra; we shall refer to it as the homo-

geneous transform of 4 or simply the transform of 4. There is a

natural mapping/ from 4 onto 4 defined by/P = P(S) where 5 is the

identity on I. Clearly, / is a homomorphism. To show that/ is onto,

let p in 4 and let / be a finite support for p. Define a [/-predicate

P of A as follows: if t is a transformation on 7 for which there exists

a [/-transformation <r so that r = a mod (/ — /), let Pir)=Sio)p;

otherwise, let P(t) =0. The definition of P is unambiguous and more-

over P(5) =£. This shows that/ is onto. The following lemma estab-

lishes the main properties of the mapping /.

(3.5) Lemma. If t is a U-transformation on I and if i is a variable of

the sort a, then ßir)P = Sir)fP and /i(t) (P AP«(*)) = 3(«')/P for every

P in Ä.

Proof. The first equality is an immediate consequence of the fact

that t*5 = t. The second equality becomes a straightforward verifi-

cation if one uses the fact that ä(t) is the i-cylindrification.

The mapping / will be referred to as the natural relativization of 4

onto 4. The next step is now to seek an abstract characterization of

the kernel of/. In order to be able to formulate this characterization,

we first define a mapping F from finite subsets J of 7 to elements

F(J) of 4 as follows. If j = <¡>, let F(0) = 1; if J is not empty let

»i, • • • , in be the distinct variables in / and assume that they are of
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the sorts «1, • • • , a» respectively and let F(J) = Fai(Í!) A, • • • ,

APa„(in). Observe that / supports F(J) and that S(t)F(J) = F(t(J))

whenever t is a [/-transformation on /. The proof of the following

lemma is a straightforward verification.

(3.6) Lemma. For any P in Ä, fP = 0 if and only if PAF(J)=0
whenever J is a finite support for P.

We are now in a position to formulate and prove the main result

of this section.

(3.7) Theorem. Let A\ and A2 be locally finite M-sorted nonhomo-

geneous algebras of infinite degree where M is finite, and let Äi and

A2 be their homogeneous transform respectively. Then Ai and A2 are

isomorphic if and only if Äx and Ä2 are isomorphic.

Proof. By an isomorphism between Äi and Ä2 we understand here

a polyadic isomorphism that preserves the predicate mapping P. If

Ai and ^42 are isomorphic, then clearly Ai and Ä2 are isomorphic; this

follows immediately from the definition of the homogeneous trans-

form. Conversely, suppose Ai and A2 are isomorphic and let g be an

isomorphism of Äi onto A2. Let/i and/2 be the natural relativizations

of Ai and A2 onto A\ and A2 respectively. Define a mapping g from

Ai onto A2 by gfip=f2gp. It follows from (3.5) and (3.6) that g is

unambiguously defined and that g is an isomorphism from Ai onto A2.
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