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Introduction. A real-valued function p(x, y) defined for — oo _ 51 < x,

y<i2= + °° is called totally positive if all of the "minors"

(Xi, Xi, ■ ■ ■ ,xn\
p[ ) = det p(xi, y¡)

Vvi, yt, ■ • •, yJ

where si < xi < x2 < • • • < x„ < s2, si < yi < y2 < • • • < y» < 52 and

w=l, 2, • • ■   are non-negative. The kernel is called strictly totally

positive if all such minors are strictly greater than zero.

We are particularly interested in the kernel

(1) p(t; x, y) = (4t/)-1'» exp{ -(x - y)2/At),

Si= — 00, j2= + 00, and generalizations of it. For any fixed i>0 this

kernel is strictly totally positive, as is well known [4]. Now (1) is

the fundamental solution of the heat equation on the real line, and

the generalization we are aiming for is to replace (1) by the funda-

mental solution of a more general heat equation

dp Id/        dp\
(2) Í = T7 H*(x) a ) " *(x)*

dt      p(x)  ox \       ax/

where p, k and q are positive functions, — 00 íási<x<s2:S + °°, and

an appropriate boundary condition at each end of the interval is speci-

fied. Any such fundamental solution of (2) may be interpreted as the

transition probability density function of a diffusion process, and

should therefore be totally positive according to a probabilistic theo-

rem of the authors [l]. We give below a nonprobabilistic and quite

general proof of this fact. A number of important cases of (2) have

already been analyzed [2 ] by the authors using a variety of special

devices.

1. Hypotheses. Rather than treat (2) we will consider the more

general differential equations introduced by Feller, see McKean [3]

and the bibliography given there. Let S=(si, s2) be an open, not

necessarily finite interval on the real line with si<0<s2. Let m(-)

and k(-) be non-negative Borel measures on S, finite on compact sets,

with m strictly positive on open subsets of S. Let D be the collection
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of all real valued continuous functions/on S such that the one sided

derivative

f(x + h) - f(x)
f+(x) =  lim JK '-—

A->o+ h

exists for each x in S and

f+(dx) -f(x)k(dx)
(*) Af = J J\'

m(dx)

is continuous on S. The meaning of (*) is that for Si<a<b<s2

f+(b) -f+(a) =   I      Afdm+ f     fdk.
J (a,6] J (a,6]

The mapping f-+Af determines a linear transformation of D into

continuous functions on 5. Our general heat equation is

dp

(3) -f = Ap.at

By an appropriate change of scale, (2) may be viewed as a special case

of (3). As a matter of fact (3) is slightly more general than the equa-

tion treated by McKean [3]. However, we are going to use the results

of McKean, which are known to be valid for (3), as presumably will

be shown in the forthcoming book by Ito and McKean.

We impose a pair of classical unmixed boundary conditions such as

piu(si) - (1 - pi)u+(si) = 0,

p2u(s2) + (1 - pi)u~(s2) = 0,

with 0~e.pi, pi'è.l. The precise nature of the allowable boundary con-

ditions at 5, depends on the nature of the boundary, and for a dis-

cussion of this we refer to McKean [3, p. 522].

2. The resolvent. We now quote a number of results from Mc-

Kean's paper. The differential equation

Au = Aw

has for every X>0 a pair of solutions ui(x, X), Ui(x, X) defined for

xES such that «i is positive, strictly increasing, and satisfies the

boundary condition at x = si, while u2 is positive, strictly decreasing,

and satisfies the boundary condition at x = s2. Moreover the Wron-

skian u*Ui — uiu£ is a positive constant which can be taken to be one.

It is shown by McKean that the resolvent kernel
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m n,        .*       (ui(x,\)ui(y,\), x^y,
(4) G(x, y; X) = <

U2(x, X)«i(y, \), x^y,

can be iterated and satisfies (X > 0)

(5) — G(x, y; X) = (-l)»»!G„+i(x, y; X)
dXn

where C7i(x, y; \)=G(x, y; X) and

G„+I(x, y; X) =   f Gn(x, z; X)G(z, y; X)m(dz).

Now it is well known that a kernel of the form (4), with X fixed

and in which «i, u2 are positive and the ratio Mi/m2 is strictly increas-

ing, is a totally positive kernel. The arguments for this in the case

of a finite matrix of similar structure are due to Gantmacher and

Krein [6]. The typical minor of the second iterate of G is expressed as

G

(6)

/xi, • ■ • , x»     \

\yi, • ■ ■ ,yn   J

-f   ix:" •■•>w{"-'í-;x)
•m(d£i) ■ ■ ■ m(d!-n)

which readily generalizes to higher order iterates. The integrand in

(6) is non-negative and this provides the tool for showing that for

fixed X > 0 the iterates of G are totally positive.

3. The fundamental solution. It is shown by McKean that (3)

possesses a unique fundamental solution p(t; x, y) satisfying the

given boundary conditions and that

•> 0

e~up(t; x, y)dt = G(x, y;X), X > 0.

Moreover p(t; x, y) is continuous on (0, «>)XSXS. Hence by the

real inversion formula for the Laplace transform (Widder [S, p. 288])

we have

(-1)* /ky+^d" 1

/ k \*+1        / k \

X-*/(
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For k2:1 and each fixed OOwe pointed out above that the kernel

qk(x, y) = (k/t)k+1Gk+i(x, y; k/t) is totally positive and hence p(t; x, y),

as a pointwise limit of such kernels, is likewise totally positive. This

proves the following.

Theorem. The fundamental solution of (3) subject to a classical

boundary condition at each end of the interval S is for every fixed t>0

a totally positive kernel.
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