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is its determinant. Now, the determinant is an irreducible polynomial

and 17J>(f) | = 1. Hence the following theorem.

Theorem 4. If f(z„) is defined holomorphic over the entire matrix

space, then it has absolute value 1 on the unitary set (6) if and only if

f(z) = e«"(det | zr, | )"

for some integer p^O.
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ON A CRITERION FOR DETERMINATE
MOMENT SEQUENCES

DAVID S. GREENSTEIN

On page 20 of [4], the following criterion is given as sufficient for

the determinacy of a Hamburger moment sequence {pn} :

1/2»       2
(1) lim inf ißin  /n) < t».

Attributed to Perron [2], it is obtainable only by transforming a

criterion for Stieltjes determinacy due to Perron. In doing so, I find

(1) not to follow from Perron's result. In this note, I shall make the

proper correction to eliminate confusion caused by the error (e.g.,

(1) if valid would be more general than Carleman's well known cri-

terion [l]). I also give an example to show that (1) is invalid.

Symmetrization of all mass distributions with the moments pn

shows that {p„} is determinate provided that there is no more than

one symmetric distribution with the moments po, 0, ju2, 0, • • ■ . But

the latter condition is easily shown to be equivalent to Stieltjes

determinacy of the moment sequence {m2»J (not the same as Ham-

burger determinacy of {p2n}  [4]).

Perron [2] gives as a sufficient condition for Stieltjes determinacy

Of   {p2n}
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(2) lim inf ip2n /n) < oo,

from which it is seen that the n2 in (1) should be replaced by w1'2.

The resulting criterion is less general than M. Riesz's criterion [3] in

which the n2 is replaced by n. Riesz shows his criterion to be less

general than that of Carleman.

None of the above precludes validity of (1). However, /x2n

= 4(4m + 1)! satisfies (1) and may be realized with the mass distribu-

tion exp(— | ¿| 1/2)dt, known [4] to yield indeterminate moments.
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