
THE POWER OF TOPOLOGICAL TYPES OF SOME
CLASSES OF 0-DIMENSIONAL SETS

m. reichbach

By a result of Mazurkiewicz and Sierpinski, there exist fc<i topo-

logical types of compact and countable sets.1 Since a countable set

is O-dimensional, there arises a natural question: what is the power

of topological types of other classes of O-dimensional sets? In this

paper we consider separable metric spaces only. Every O-dimensional

space being topologically contained in the Cantor set2 C, we confine

ourselves to subsets of this set.

We prove the following three theorems:

Theorem 1. There exist two topological types of open subsets of the

Cantor set C.

Theorem 2. There exist 2Ko topological types of closed subsets of the

Cantor set C.

Theorem 3. There exist 2t<0 topological types of O-dimensional Gs sets

which are dense in themselves.

Theorem 1 is known in part,8 but it seems to the author that an

exact proof of it has not been published so far.

Theorems 2 and 3 are new ; the latter gives an answer to a problem

by Knaster and Urbanik.4

The paper contains also some lemmas on homeomorphisms and a

notion of a rank rp(B) oí a point p relative to the set B.

1. In this section a lemma on homeomorphisms and the above

Theorem 1 are proved.

Lemma 1. Let {p„} and {Gn\ be two sequences of sets satisfying

(1) Fnr\Fm = 0 = GnnGmfor n^m,

(2) for every n the set Fn is open in the union F=U„°„i F„ and Gn is

open in l7 = U^_i Gn, and

(3) for every n there exists a homeomorphism h„ such that h„(Fn)

= Gn, n= 1, 2, • •

Then the mapping h defined by h(x) =hn(x) for xEFn is a homeomor-

phism between F and G.
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1 See [6, p. 22].

» See [4, p. 173].
• Some general hints may be found in [3, p. 198].

< See [3, p. 198].
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Proof. By (1) and (3), h is a one-to-one mapping of F onto G.

Since the proofs of the continuity of h and hrl are symmetric, we

shall show that h is continuous.

Indeed, let {x„} be a sequence of points belonging to F, tending to

a point x of F: xn—»x. Since xEF, there exists a number w0 such that

xEFn¡¡. Now by (2) there exists a number N such that for n>N there

is XnEFH„ (since otherwise the set F„0 would not be open in F). But

h„0 is continuous—as a homeomorphism—and therefore for n>N:

h(xn)=hn0(x„)^>hn0(x)=h(x).

Remark 1. Let Fn be the plane set defined by P„ = {(x, y) ; x = 1/n,

0<Jy<Jl} and put G={(x, y); x = 0; 0<Jy<jl} and Gn+i = Fn,

»= 1, 2, • • • . For these sets the assumption (2) of the lemma is not

satisfied for the set G only and evidently P=U^°_1 P„ is not homeo-

morphic with G = U¿°_1 Gn, since G is a compact set and F is not. This

shows also that assumption (2) of the lemma cannot be replaced by

the assumption that Fn and Gn are compact and p(F„, Fm)6 and

p(Gn, Gn) are positive for all n?¿m.

To prove Theorem 1 it suffices to show that:

Every open subset of the Cantor set C is either homeomorphic to

C or to C without the zero point: C\(0).

Proof. Let G be an open subset of the Cantor set C. Then G can be

written in the form :•

(4) G = Gi\JG2KJ • • • , Gnr\Gm = 0 for n^m, where the sets G„ are

closed and open in C.

Now two cases are possible:

(a) G is a finite union of the sets G„, i.e. there exists an integer N

such that G„ = 0 for n > N, and

(b) all the sets G„ in (4) are nonempty.

Since

(5) a closed and open subset of the Cantor set C is a perfect set,

we see that in case (a) the set G is a perfect O-dimensional set and

therefore homeomorphic to the Cantor set C.

In case (b) we can write the set C\(0) analogically as in (4) in the

form:

(6) C\(0) = PAJP2 • ■ • , FnC\Fm = 0, for n^m, where the sets Fn

are nonempty and closed and open in C.

By (5) there exists for every n a homeomorphism h„ between Fn

and G„ and therefore by (4) and (6) the assumptions of the lemma

hold.

* By p(F„, Fm) we understand the distance between the sets Fn and Fm, i.e. p{Fn, Fm)

= inf x€Fn. »efwp(*i y), where p(x, y) denotes the distance between the points * and y.

• See f4, p. 166].
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Thus by the lemma the set G is, in case (b), homeomorphic to C\(0).

Remark 2. Theorem 1 may also be proved in another way by using

the one-point compactification theorem,7 but such an exact proof is

not simpler than ours.

2. We show in this section that there exist 2"° topological types of

closed subsets of the Cantor set C. Since the power of all closed sub-

sets of C is 2H" and every O-dimensional space has a topological image

in the Cantor set C, it suffices to construct a family 5 of power 21*0 of

compact, O-dimensional sets, such that no two sets belonging to this

family are homeomorphic. To do this we introduce the notion of a

rank rp(B) of a point p relative to the set B. First we recall the

notion of the coherence and adherence of a set E in the sense of

Hausdorff.8

The Oth coherence of E is equal to E; the cvth coherence of E is the

set of all limits ^ = limn^KJ xn; Xi^Xj for »5*7 such that x and xn be-

long to the (a — l)th coherence, if a —1 exists, and the intersection

of all coherences with indices <a if a is a limit number. The ath

adherence is the difference between the ctth and the (a+l)th co-

herences.

Evidently, the ath adherence is an isolated set. The ath adherence

of the set E will be denoted by E(a). It is clear that if E is a compact

and countable set and E(ß) is the last derivative9 (t^O) of E, then

£«,) = £«» and £ = U£s/3£(£).

Example 1. Take on the *-axis the sets of points defined by: £1

= {x;x=l/n,n=l,2, ■ ■ • } E2= {x;x=l/n + l/m,m,n=l,2, ■ • • },

£3=(jE2\Ei)U(0). Then, the first coherence of Ei is empty and the

first derivative of Ei consists of the point x = 0. The first coherence

of the set Es consists of the point 0. The second coherence of Et is

empty. The first derivative of E3 is the set isiU(O) and the second

derivative of E3 consists of the point 0.

We define now the rank rp(B) of a point pE^,10 where B is a

countable set such that B is O-dimensional.11

'See [1, p. 93; 5, p. 50].
»See [2, p. 132].
' The derivative E' of the set E is defined as the set of points z = lim,_„ x¡, where

xiEE, xt^Xj for it*]. Thus in the definition of the derivative there is no need for the

point x to belong to E. The ath derivative E(a) is defined as follows: £(0) = £;

£(«)=[£<«-«]' if a-1 exists and £(a» = n{<a E(f> if a is a limit number. If ß is the

smallest ordinal such that £(*>> = £(0+1)^0 or £<*■» = 0 and E#V0 then £<"> is called

the last derivative of £ and ß the order of the last derivative of E.

10 B and Cl(5) denote the closure of B.

11 The rank rr(B) can be defined in a more general case, but for our purpose the

above definition is sufficient.
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Definition. Let pEB where B is a countable set and B is 0-

dimensional. If pEB(o) we define rP(B) =0. If there exists an a such

that p = lim„_00 p„ where pnEBM and p is not a limit point12 of

-B(a+D, we define rp(B) =a+l.

If such an a does not exist, then there exist an ordinal a', a sequence

{<*„' } of ordinals such that añ —>a' and a sequence of points pnEB(a¿ >

such that p = limn..x pn and p is not a limit point of P <<»')• In this case

we define rp(B) =a'.

Example 2. If Et is the set defined in Example 1, the rank of the

point 0 relative to E3 is equal to 1.

Let now £i and P2 be compact and countable sets, such that the

wth derivative Ef* of Ei consists of the point p : E^ = (p) and the

second derivative £® of E2 consists of the point q:Efi = (q). Put

Et = EiX(q)yJ(p)XEi and B=[(p) XE2]\(p, g).18 Then r(p,q)(B)=2

and ríp¡q)(E3)=u.

To define the family í a few additional simple remarks are needed.

Since the order a of a coherence is an invariant of homeomorphisms,

it is easily seen that

(7) the rank rp(B) is an invariant of homeomorphisms defined

on B.

Take now the Cantor set C and let E be a compact and countable

subset of C such that the coth derivative EM of E consists of the point

q: EM = (q). Take the «th adherence E(n) of E, n= 1, 2, ■ • • and

choose from every E(n) a point p„.

Since the order of an adherence is invariant under homeomorphisms

we have that

(8) if h is any homeomorphism of E into itself, then h(pn)^pm

for n^m.

Let now Dn be the sequence of intervals in the plane defined

by Dn={ (x, y); x = pn, O^y^ 1} n = 1, 2, • ■ ■ and let {«„} be a

sequence of ordinals: 1 <a„<0. Choose in every Dn a countable and

compact subset Fn such that an be the order of the last derivative

Ft*} of Fn and that Fnm) = (pn). Then the set A = CKJÖ'.i Fn is com-

pact (since the diameters of Dn are equal to 1/n and FnEDn) and

0-dimensional. By the definition of Fn we have also

(9) rfc( Ü PAZ?) = «„ > 1, n=l, 2, ■••.

Now take in the plane an arbitrary bounded and isolated set /

u A point x such that there exists a sequence {*„J of points xn belonging to E,

Xn^Xn for n^m and such that *»—*x is called a limit point of E.

a X denotes the Cartesian product and {p, q) is the point in the Cartesian product.
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disjoint with C such that 7<1> = £. Then the set ^i = CUU^.i FnKJI

is O-dimensional and compact. Denoting the decomposition of A\ ac-

cording to the theorem of Cantor-Bendixson by ^4i = PiU5i with Pi

as perfect set, we obtain

Pi = C   and   Bi = ( U Fa UI j\E

and by the definition of /,

Pi H Bi = E.

Since / is isolated there is also, by (9),

(10) r^(Bi) =a„> 1 and for every pEE and p*pn, rp(Bi) = 1.

If we take now any other sequence {ßn} of ordinals: 1 <|8n<i2 and

the same set E and points pn, we can construct, analogically as before,

a O-dimensional and compact set Ai with the following properties:

If we denote the decomposition of ^42 according to the theorem of

Cantor-Bendixson by ^42 = P2UB2 with P2 as perfect set, then Pi = C

and

p,ri!i = e.

Also

(10') r^(B2) =0„> 1 and for every pEE and p*pn, rp(B2) = 1.

Now suppose that there exists a homeomorphism h between A1 and

A2:h(Ai) "At. Then we would have ¿(P/Mi) = P2n2?2, i.e., h(E) =E.
Hence by (8) there would be h(pn)^pm for nj¿m. But, by (7), (10)

and (10') there must be h(p„)=pn and therefore by (7), an = ßn for

every n. This shows that if the sequences {an} and {ßn} are different,

the sets Ax and ^42 cannot be homeomorphic. But the power of all

sequences {an}, Ka„<fl is K1'0 = 2Ko. Hence Theorem 2 holds.

Remark 3. In [7, p. 119], we introduced a function oaÍB) assigning

to every O-dimensional compact set A an ordinal <0. Using this

function, it can be easily shown that the power of all topological types

of compact uncountable subsets of the Cantor set is Ni. (This can

be also obtained from the result of Mazurkiewicz and Sierpinski,

mentioned at the beginning of this paper.) Thus by the continuum

hypothesis it is equal to 2Mo, but we proved this fact without recourse

to this hypothesis.

Note also that the fact that there exist 2Mo topological types of

closed sets (not necessarily O-dimensional) was stated in [6, p. 27].

3. In this section a proof of Theorem 3 is given. Two lemmas are

also proved.
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Lemma 2. Let Ci and Ci be two compact O-dimensional sets and let

S i EC i be two subsets of C,-, i= 1, 2 such that C1(G\G) = G. Suppose
that there exists a homeomorphism h(Ci\Si) = C2\S2 and let pECi\Si

be a limit point of Si. Then the point h(p)=q is a limit point of S2.

Proof. Suppose that q is not a limit point of S2. Since C2 is 0-

dimensional, there exists a closed and open (in C2) neighbourhood

UEC2 of q such that Uf~}S2 = 0. U being closed in C2 it is compact;

and since h~l is continuous h_1(U) is also a compact subset of G\G.

But h~x(U) ECi\Si is also a neighbourhood of p, and since C1(G\G)

= G and p is a limit point of G, there exists a point p'ESi such that

p'Eh~l(U), which is impossible.

As a trivial consequence of Lemma 2 we obtain the following:

Lemma 3. Let G and C2 be two perfect, O-dimensional sets (containing

more than one point) and let S{ C C,- be two subsets of C< such that G is

denumerable. Suppose that there exists a homeomorphism h(Ci\Si)

= C2\S2 and let pECi\Si be a limit point of Si, then the point h(p) = q

is a limit point of S2.

Indeed, since Si is denumerable we have Cl(Ci\G) = Ci. The other

assumptions of Lemma 2 being trivially satisfied it remains to apply

this lemma.

Proof of Theorem 3. Since every subset of C which is a G¡ set is

defined by a sequence of open sets and the power of all open subsets

of C is 2"°, the power of all Gj sets does not exceed (2K°)t,0 = 2t<0.

Therefore it remains to construct a family of power 2i,° of G¡ sets

which are dense in themselves and such that no two sets of this family

are homeomorphic. We proceed to do this.

Take a perfect subset P of the set C which is nowhere dense in C.

By Theorem 2 there exists a family ff of power 2"° of closed subsets

of P14 such that every two sets of fj are not homeomorphic. Since P

is closed and nowhere dense in C the sets of ff are nowhere dense

closed subsets of C. Thus for every set FE3 there exists a sequence

SEC of points such that FEC\S and S = FUS. Now take two sets

Pi and F2 of ff and two sequences Si and S2 of points such that

G CG FíEC,\Sí and Sí = FíVSí.
Consider the sets C\G, i= 1, 2. We shall show that these sets are not

homeomorphic. Indeed, suppose that there exists a homeomorphism

h(C\Si) = C\S2. Since Si is denumerable and C is perfect the assump-

tions of Lemma 3 hold for G = C2=G Thus, by P,CG\Si and
Si = Fi'USi every point p of Pi has an image h(p) in F2and conversely

14 Evidently P is homeomorphic to C.
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for every qEF2 there is h~liq)EFi. Hence by hiC\Si) = C\S2 there is

A(Pi) = F2 which is impossible by FiE5, *=*1, 2.
Thus we can correspond to every set FE$ a set C\S, where 5 is

denumerable, in such a way that the sets C\Si and C\S2, correspond-

ing to different sets Pi and P2 of $, are not homeomorphic. Since the

power of fj is 2Mo the power of the family of corresponding sets of the

form C\S is also 2No. Since 5 is denumerable the sets C\S are G¡ sets

and since C is perfect they are also dense in themselves. Hence Theo-

rem 3 holds.
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