FIXED POINT THEOREMS FOR PSEUDO MONOTONE MAPPINGS¹

L. E. WARD, JR.

1. Introduction. Recently [7] the author generalized a well-known theorem of Hamilton [1] in the following manner: if X is a continuum each of whose subcontinua is unicoherent and decomposable, then X has the fixed point property for monotone transformations. As a corollary it followed that the same fixed point property obtains for continua each of whose nondegenerate subcontinua has a cutpoint. The argument depended on the order structure of a certain arcwise connected hyperspace of the continuum.

In this note we arrive at the same corollary by a distinctly different and simpler proof. Au fond the argument is essentially the same as one due to Kelley [2] where it was shown that a homeomorphism of a continuum into itself has an invariant, cutpoint-free subcontinuum. (The analogous result for monotone transformations was proved by the author in [6].) The proof of Kelley does not make full use of the properties of homeomorphisms; the essential properties which make his argument work define a class of transformations which we shall term the pseudo monotone mappings.

Finally, we note that our results for pseudo monotone mappings admit a further generalization in the setting of partially ordered topological spaces.

2. Pseudo monotone mappings. Let X and Y be spaces and $f: X \rightarrow Y$ a continuous mapping. We say that f is pseudo monotone if, whenever A and B are closed and connected subsets of X and Y, respectively, and $B \subset f(A)$, it follows that some component of $A \cap f^{-1}(B)$ is mapped by f onto B. In general this notion is independent of that of a monotone mapping, but in certain applications of interest every monotone mapping is pseudo monotone.

Recall that a continuum (=compact connected Hausdorff space) is hereditarily unicoherent if any two of its subcontinua meet in a connected set.

Lemma 1. If X is an hereditarily unicoherent continuum and $f: X \rightarrow Y$ is a monotone mapping, then f is pseudo monotone.

Presented to the Society, April 22, 1961; received by the editors December 28, 1960.

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under Contract No. AF 49(638)-889. Reproduction in whole or in part is permitted for any purpose of the United States Government.

PROOF. Let A and B be closed and connected subsets of X and Y, respectively, such that $B \subset f(A)$. Since f is monotone, $f^{-1}(B)$ is a continuum, and since X is hereditarily unicoherent, $A \cap f^{-1}(B)$ is connected. Hence f is pseudo monotone.

Suppose now that X is a continuum and that $f: X \rightarrow X$ is continuous. A simple maximality argument establishes the existence of a nonempty subcontinuum Y, which is minimal with respect to being invariant under f. Suppose Y has a cutpoint p, with

$$Y - p = A \cup B$$

where A and B are disjoint, separated and nonempty. If f(p) = p then the minimality of Y is contradicted, so we may assume $f(p) \in A$ and define $r(Y) = \overline{A}$ by

$$r(x) = x,$$
 $x \in \overline{A},$ $r(x) = p,$ $x \in \overline{B}.$

The mapping $g: \overline{A} \rightarrow \overline{A}$ defined by g = rf is continuous, and the set

$$K = \bigcap_{n=1}^{\infty} \left\{ g^n(\overline{A}) \right\}$$

is a subcontinuum of \overline{A} which is invariant under g. Thus

$$f(K) \cap K = rf(K) = g(K) = K$$

and we infer $K \subset f(K)$. Therefore, if f is pseudo monotone, the set $K \cap f^{-1}(K)$ has a component K_1 such that $f(K_1) = K$. Inductively we obtain a sequence of subcontinua, K_n , such that

$$K_n \subset f(K_n) = K_{n-1} \subset \cdots \subset f(K_1) = K$$
.

Clearly, the intersection of this sequence is a nonempty subcontinuum invariant under f, and this contradicts the minimality of Y. We have proved

THEOREM 1. If X is a continuum and $f: X \rightarrow X$ is a pseudo monotone mapping, then X contains a nonempty subcontinuum Y which is minimal with respect to being invariant under f. Moreover, Y has no cutpoints.

COROLLARY 1.1. If X is a continuum such that each of its nondegenerate subcontinua has a cutpoint, and if $f: X \rightarrow X$ is a pseudo monotone mapping, then there exists $x_0 \in X$ such that $x_0 = f(x_0)$.

It has been proved elsewhere [7] that the continua of Corollary 1.1 are hereditarily unicoherent. Therefore, by Lemma 1, we have

COROLLARY 1.2. If X is a continuum such that each of its nondegenerate subcontinua has a cutpoint, and if $f: X \rightarrow X$ is a monotone mapping, then there exists $x_0 \in X$ such that $x_0 = f(x_0)$.

3. A generalization. In [5] the author defined a POTS (= partially ordered topological space) to be a partially ordered set X, so topologized that the sets

$$L(x) = \{a: a \leq x\}, \qquad M(x) = \{a: x \leq a\}$$

are closed, for each $x \in X$. Two elements x and y of X are comparable if $x \le y$ or $y \le x$. In the event X contains a *unit*, i.e., a unique element e such that L(e) = X, we say that the subset A of X is bounded away from e if there exists $y \ne e$ such that $A \subset L(y)$.

The following theorem was proved in [5].

1962]

FIXED POINT THEOREM. Let X be a compact Hausdorff POTS with unit, e. Let $f: X \rightarrow X$ be a continuous, order-preserving mapping satisfying the following conditions.

- (i) There exists $x \neq e$ such that x and f(x) are comparable.
- (ii) If $x \neq e$ and if x and f(x) are comparable, then either the sequence $f^n(x)$, $n = 1, 2, \dots$, is bounded away from e, or $f^{-1}(x) \cap L(x)$ is non-empty.

Then there exists $x_0 \neq e$ such that $x_0 = f(x_0)$.

For the remainder of this paper let us assume that X is a compact Hausdorff POTS with unit e, which is endowed with the following two properties.

- (a) There exist elements a, b and p of X such that $L(a) \cap L(b) = p$.
- (b) If $x \in X L(a) \cup L(b)$ then $p \le x$ and each of the sets $L(x) \cap L(a)$ and $L(x) \cap L(b)$ has a supremum.

Let $f: X \rightarrow X$ be continuous and order-preserving, and suppose f maps minimal elements into minimal elements. In addition, suppose f satisfies the following order-theoretic analogue of pseudo monotonicity.

(P) If $x \le f(x)$ then $f^{-1}(x) \cap L(x)$ is nonempty.

According to the fixed point theorem above, f has a fixed point distinct from e if $f(x) \le x$ for some $x \ne e$. If this does not occur, then by (β) and the fact that f(p) is minimal, we have $f(p) \le a$ or $f(p) \le b$, but not both. Suppose $f(p) \le a$; since f is order-preserving, f(a) cannot lie in L(b). Moreover, f(a) cannot lie in L(a) by assumption, so that by (β) there must exist

$$t_1 = \sup (L(f(a)) \cap L(a)),$$

with $p \le t_1$. Now $f(t_1) \in X - L(a)$ and, since $p \le t_1$, it follows that $f(p) \le f(t_1)$ and hence $f(t_1) \in X - L(b)$. Applying (β) again there exists

$$t_2 = \sup(L(f(t_1)) \cap L(a))$$

with $p \le t_2$. Because f is order-preserving it follows that $f(t_1) \le f(a)$ and hence $t_2 \le f(a)$. Moreover, $t_2 \le a$ so that $t_2 \le t_1$. Inductively, we obtain a sequence t_n satisfying

$$t_{n+1} = \sup(L(f(t_n)) \cap L(a)), p \leq t_{n+1} \leq t_n.$$

Since t_n is a decreasing sequence, it must converge to some $t_0 \le t_n$. Further, since $t_n \le f(t_{n-1})$, it follows that $t_0 \le f(t_0)$. Condition (i) is now satisfied and (ii) follows from (P) and the above discussion. Hence we infer (compare with a result of A. D. Wallace [4])

THEOREM 2. Let X be a nondegenerate compact Hausdorff POTS with unit e, satisfying (α) and (β). Let $f: X \rightarrow X$ be a continuous, order-preserving mapping which maps minimal elements into minimal elements and satisfies (P). Then there exists $x_0 \in X - e$ such that $f(x_0) = x_0$.

It is not difficult to see that Theorem 2 is truly a generalization of Theorem 1. Let Y be a continuum with a cutpoint p, and let f(Y) = Y be pseudo monotone. If X is the space of subcontinua of Y, endowed with the finite topology [3], and if f^* is the mapping of X into itself induced by f, then f^* and f^* satisfy the hypotheses of Theorem 2, where the partial order is taken to be inclusion. Thus Y contains an invariant proper subcontinuum and Theorem 1 follows.

REFERENCES

- 1. O. H. Hamilton, Fixed points under transformations of continua which are not connected im kleinen, Trans. Amer. Math. Soc. vol. 44 (1938) pp. 18-24.
- 2. J. L. Kelley, Fixed sets under homeomorphisms, Duke Math. J. vol. 5 (1939) pp. 535-536.
- 3. Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 152-182.
- 4. A. D. Wallace, A fixed point theorem, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 413-416.
- 5. L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 144-161.
- 6. _____, Continua invariant under monotone transformations, J. London Math. Soc. vol. 31 (1956) pp. 114-119.
- 7. ——, A fixed point theorem for monotone mappings, Abstract No. 61T-45, Notices Amer. Math. Soc. vol. 8 (1961) p. 66.

University of Oregon