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Let L(hn) be the aggregate of linear transformations (sometimes

called operators) of the complex » dimensional Hubert space hn into

itself. All members of L(hn) are bounded and we assign to L(hn) the

topology induced by the usual metric. The determinant is a well de-

fined mapping of L(hn) into the complex numbers (see [l]) which is

continuous, multiplicative in the sense that det(AB) = (det A)(det B)

for all A, BEL(hn) and * in the sense that det(c/)^0 where I is

the identity mapping and c is a nonnegative scalar.

It is our purpose to study the determinant and other continuous

*-multiplicative mappings of L(hn) into the complex numbers. The

functions identically 0 and identically 1, for example, are such map-

pings other than the determinant. However we have the following

uniqueness theorem. (In all that follows "c" denotes the operator

"ci" where c is scalar, I is the identity; the distinction between the

operator "c" and the scalar "c" can easily be inferred from the con-

text.)

Theorem 1. Let <j>be a continuous *-multiplicative mapping of L(hn)

into the complex numbers such that <b(exp(l+i)) =exp(n+ni). Then <b

is the determinant on L(hn).

The problem of characterizing the determinant as a multiplicative

mapping of the ring of « by n matrices with complex entries into the

complex field is not new. In [3] Stephanos proved that such a multi-

plicative mapping which is differentiable with respect to each entry

in the matrix (when all the other entries are fixed) must be a power

of the determinant. Stephanos' theorem will be proved in our work

also. (See [2 ] for a discussion of multiplicative mappings which are

polynomials in the entries.) We will present seven lemmas before

proving Theorem 1. The first four show that <p, like the determinant,

is zero on singular operators.

Lemma 1. For the mapping cp given in Theorem I, 0(0) = 0.

Proof. We have 0(0) = 0(exp(l + i)0) = 0(exp(l + i))<p(0)

= exp(n+ni)4>(0). But exp(n+ni)y^l and hence 0(0) =0.

Lemma 2. For the mapping <f> given in Theorem 1, 0(1) = 1.
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Proof.   We   have   exp(«+»î)=0(exp(l-H)l) = 0(exp(l-H))0(l)

= exp(w+wj)0(l). But exp(w+»i')^0 and hence 0(1) = 1.

Lemma 3. If UEL(h„) is nonsingular, <p(UAU~1)=<t>(A) for all

AEL(hn).

Proof. We have 4>(UAU~l) = 0( £7)0(41/"1) = <b(AU~l)<f>(U)

=<p(AU-1U)=<b(A).

Lemma 4. If AEL(h„) is singular, then 0(4) = 0.

Proof. Select a unitary operator i/i such that UiA i/f1 annihilates

a vector in the range of 4. The dimension of the null space of

(UiAUr^A is at least 2. By induction there exist n — 1 (or fewer)

unitary operators U\, t/2, • • • , Un-x such that ( Z/„_i4 U^-i) ■ ■ ■

(L7i4i/r1)4=0. By Lemmas 1, 3 we have 0 = 0(0) =0(4)" and

0(4) =0.
Before we present the remaining lemmas we introduce the mapping

p as follows. Let x be a nonzero vector and let *„_i be the orthogonal

complement of (x), the subspace spanned by x. For each scalar a let

Ta denote the operator which is the identity on *n-i and carries x

into ax. Define p(a)=d>(Ta); by Lemma 3, p is independent of the

choice of x.

In the next two lemmas we show that 0(4) = p(det A) for 4 EL(hn).

This is already established on singular operators, both sides reducing

to 0. It is also evident on operators of the type Ta described above.

Lemma 5. If A EL(hn) is normal, 0(4) =p(det A).

Proof. Let 4 be normal. By the spectral theorem there exist oper-

ators 4i, • • • , 4„ of the type Ta described above such that

4 = Ax ■ ■ • An. Then 0(4) = 0(40 • • • 0(4„) = p(det 4i) • • •
p(det An). Observe that p is multiplicative because p(ab)=<b(TaTi)

= <p(Ta)<p(Tb) = p(a)p(b). Hence 0(4) = ¿(det 4i • ■ • det A»)

= p(detA).

Lemma 6. If AEL(hn), then <¡>(A)=p(det A).

Proof. It remains only to prove 0(4) =p(det A) for 4 nonsingular.

By the polar decomposition there is a unitary operator U such that

4 = U(A*A)112, where 4* denotes the operator adjoint of 4. But U

and (4*4)1'2 are normal, and hence 0(4) =0(£/)0((4*4)1/2)

= p(det U)p(dtt (4*4)1'2)=p(det U det(4*4)1'2) = p(det 4) by

Lemma 5.

Having established Lemma 6 we investigate the mapping p.
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Lemma 7. The mapping p is continuous and multiplicative, carries

zero into zero, carries the unit circle into itself and carries the positive

real axis into itself.

Proof. Since 0 is continuous, p is continuous also. By Lemma 4,

p(0) = 0 and in Lemma 5 we showed that p is multiplicative. For

\z\ =1 we have p(z)¿¿0; otherwise 1 =0(1) = p(zz~l) =p(z)p(z~l) = 0.

Hence p is bounded away from zero on the unit circle. For \z\ = 1 we

also have \p(z)\ =1; otherwise \p(z)\ ¿¿1, \z\ =1 and p(zm)=p(z)m

is not bounded away from zero as m runs through all positive and

negative integers. Hence p carries the unit circle into itself. Since 0

is *, p(c)^0 for c^O. But clearly p(c)^0 for c>0 and consequently

p carries the positive real axis into itself.

A slight digression from our development proves Stephanos' theo-

rem. Let 0 be a multiplicative mapping of the ring of w by » matrices

with complex entries into the complex plane such that 0 is differ-

entiable with respect to each entry. It follows that there is a multi-

plicative mapping p of the complex plane into itself such that <p(A)

= p(detA) for every » by « matrix A. By considering diagonal

matrices for which all diagonal elements after the first are 1, we see

that p is entire. Hence p must be of the form p(z) =zm for some integer

m^O and 0(^4) = (det A)m. Indeed it suffices if 0 is differentiable with

respect to one diagonal entry.

To establish Theorem 1 we need only show that p is the identity

mapping.

Proof of Theorem 1. Since p is a continuous multiplicative map-

ping of the unit circle into itself it follows that there is an integer m,

positive, negative or zero, such that p(z) =zm for \z\ =1. Since p is a

continuous multiplicative mapping of the positive real axis into it-

self there is a real number r such that p(x)=xr for x>0. Now by

hypothesis 0(exp(l + i)) = exp(» + ni) = p(exp(n + ni))

= p(exp n)p(exp ni). But \p(expni)\=l and p(expn)>0; hence

exp(nmi)=exp(ni) and exp(r») = exp ». Clearly r=l; because ir is

irrational m=l. Hence p is the identity and the proof is complete.

Next we turn to continuous *-multiplicative mappings other than

the determinant.

Theorem 2. Let 0 be a continuous *-multiplicative mapping of L(h„)

into the complex numbers. Then

(1) If 0(exp(l +i)) = 0, 0 is identically 0.
(2) If |0(exp(l-H'))| =l,<pis identically 1.
(3) If d is another continuous * -multiplicative mapping such that
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0(exp(l + i)) = 0(exp(l + i)),

then 0 = 0 on L(hn).

Proof of (1). If 0(exp(l+¿)) = 0, then 0(4) = 0(exp(l + i))

•0(exp(-1 -i)A) = 0, all 4 EL(hn).
Proof of (2). Suppose |0(exp(l-H))| =1 but there is a TEL(hn)

such that 0(7") ?*1. Then 0(0) =0(O)0(P) and 0(0) =0. Lemma 1 is
valid for 0, and so are all the Lemmas 1-7. In the proof of Theorem 1

we necessarily have r = 0, and hence |0(4)| =1 for 4 nonsingular.

But in every neighborhood of the zero operator there are nonsingular

operators, contrary to the fact that 0 is continuous. Hence 0 is

identically 1.

Proof of (3). We can suppose that 0(exp(l-H)) =0(exp(l-H)) is

not 0 and not 1. Then Lemmas 1-7 apply to 0 and to 0. In the proof of

Theorem 1, 0 and 0 define the same r and the same m, and the result

is established.

Given a complex number c there is at most one continuous *-multi-

plicative mapping 0 of L(h„) into the complex plane such that

0(exp(l-H)) =c. It remains to find the admissible values for c, those

complex numbers for which there exists such a 0. Clearly 0 and 1 are

admissible values. Lemmas 1-7 are valid for any 0 not identically

0 or 1 and the proof of Theorem 1 shows that arg 0(exp(l+i)) is a

multiple of n. Likewise |0 (exp(l-N))| >1; otherwise r = 0 and 0 is

discontinuous at the zero operator. This proves

Theorem 3. The admissible values of c are 0, 1 and any complex

number c for which \c\ >1 and c/\c\ is a (positive, negative or zero)

power of exp(ni).
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