ON MULTIPLICATIVE MAPPINGS OF RINGS OF OPERATORS

S. CATER

Let $L(h_n)$ be the aggregate of linear transformations (sometimes called operators) of the complex n dimensional Hilbert space h_n into itself. All members of $L(h_n)$ are bounded and we assign to $L(h_n)$ the topology induced by the usual metric. The determinant is a well defined mapping of $L(h_n)$ into the complex numbers (see [1]) which is continuous, multiplicative in the sense that $\det(AB) = (\det A)(\det B)$ for all A, $B \in L(h_n)$ and * in the sense that $\det(cI) \ge 0$ where I is the identity mapping and c is a nonnegative scalar.

It is our purpose to study the determinant and other continuous *-multiplicative mappings of $L(h_n)$ into the complex numbers. The functions identically 0 and identically 1, for example, are such mappings other than the determinant. However we have the following uniqueness theorem. (In all that follows "c" denotes the operator "cI" where c is scalar, I is the identity; the distinction between the operator "c" and the scalar "c" can easily be inferred from the context.)

THEOREM 1. Let ϕ be a continuous *-multiplicative mapping of $L(h_n)$ into the complex numbers such that $\phi(\exp(1+i)) = \exp(n+ni)$. Then ϕ is the determinant on $L(h_n)$.

The problem of characterizing the determinant as a multiplicative mapping of the ring of n by n matrices with complex entries into the complex field is not new. In [3] Stephanos proved that such a multiplicative mapping which is differentiable with respect to each entry in the matrix (when all the other entries are fixed) must be a power of the determinant. Stephanos' theorem will be proved in our work also. (See [2] for a discussion of multiplicative mappings which are polynomials in the entries.) We will present seven lemmas before proving Theorem 1. The first four show that ϕ , like the determinant, is zero on singular operators.

LEMMA 1. For the mapping ϕ given in Theorem 1, $\phi(0) = 0$.

PROOF. We have $\phi(0) = \phi(\exp(1+i)0) = \phi(\exp(1+i))\phi(0)$ = $\exp(n+ni)\phi(0)$. But $\exp(n+ni) \neq 1$ and hence $\phi(0) = 0$.

LEMMA 2. For the mapping ϕ given in Theorem 1, $\phi(1) = 1$.

Received by the editors October 20, 1960 and, in revised form, February 12, 1961.

PROOF. We have $\exp(n+ni) = \phi(\exp(1+i)1) = \phi(\exp(1+i))\phi(1)$ = $\exp(n+ni)\phi(1)$. But $\exp(n+ni) \neq 0$ and hence $\phi(1) = 1$.

LEMMA 3. If $U \in L(h_n)$ is nonsingular, $\phi(UAU^{-1}) = \phi(A)$ for all $A \in L(h_n)$.

PROOF. We have $\phi(UAU^{-1}) = \phi(U)\phi(AU^{-1}) = \phi(AU^{-1})\phi(U) = \phi(AU^{-1}U) = \phi(A)$.

LEMMA 4. If $A \in L(h_n)$ is singular, then $\phi(A) = 0$.

PROOF. Select a unitary operator U_1 such that $U_1AU_1^{-1}$ annihilates a vector in the range of A. The dimension of the null space of $(U_1AU_1^{-1})A$ is at least 2. By induction there exist n-1 (or fewer) unitary operators $U_1, U_2, \cdots, U_{n-1}$ such that $(U_{n-1}AU_{n-1}^{-1})\cdots (U_1AU_1^{-1})A=0$. By Lemmas 1, 3 we have $0=\phi(0)=\phi(A)^n$ and $\phi(A)=0$.

Before we present the remaining lemmas we introduce the mapping p as follows. Let x be a nonzero vector and let h_{n-1} be the orthogonal complement of (x), the subspace spanned by x. For each scalar a let T_a denote the operator which is the identity on h_{n-1} and carries x into ax. Define $p(a) = \phi(T_a)$; by Lemma 3, p is independent of the choice of x.

In the next two lemmas we show that $\phi(A) = p(\det A)$ for $A \in L(h_n)$. This is already established on singular operators, both sides reducing to 0. It is also evident on operators of the type T_a described above.

LEMMA 5. If $A \in L(h_n)$ is normal, $\phi(A) = p(\det A)$.

PROOF. Let A be normal. By the spectral theorem there exist operators A_1, \dots, A_n of the type T_a described above such that $A = A_1 \dots A_n$. Then $\phi(A) = \phi(A_1) \dots \phi(A_n) = p(\det A_1) \dots p(\det A_n)$. Observe that p is multiplicative because $p(ab) = \phi(T_a T_b) = \phi(T_a)\phi(T_b) = p(a)p(b)$. Hence $\phi(A) = p(\det A_1 \dots \det A_n) = p(\det A)$.

LEMMA 6. If $A \in L(h_n)$, then $\phi(A) = p(\det A)$.

PROOF. It remains only to prove $\phi(A) = p(\det A)$ for A nonsingular. By the polar decomposition there is a unitary operator U such that $A = U(A*A)^{1/2}$, where A* denotes the operator adjoint of A. But U and $(A*A)^{1/2}$ are normal, and hence $\phi(A) = \phi(U)\phi((A*A)^{1/2}) = p(\det U)p(\det (A*A)^{1/2}) = p(\det U)\exp(\det A)$ by Lemma 5.

Having established Lemma 6 we investigate the mapping p.

LEMMA 7. The mapping p is continuous and multiplicative, carries zero into zero, carries the unit circle into itself and carries the positive real axis into itself.

PROOF. Since ϕ is continuous, p is continuous also. By Lemma 4, p(0) = 0 and in Lemma 5 we showed that p is multiplicative. For |z| = 1 we have $p(z) \neq 0$; otherwise $1 = \phi(1) = p(zz^{-1}) = p(z)p(z^{-1}) = 0$. Hence p is bounded away from zero on the unit circle. For |z| = 1 we also have |p(z)| = 1; otherwise $|p(z)| \neq 1$, |z| = 1 and $p(z^m) = p(z)^m$ is not bounded away from zero as m runs through all positive and negative integers. Hence p carries the unit circle into itself. Since p is $p(c) \geq 0$ for $p(c) \geq 0$ for $p(c) \geq 0$ and consequently $p(c) \geq 0$ for $p(c) \geq 0$ and consequently $p(c) \geq 0$ for $p(c) \geq 0$ and consequently $p(c) \geq 0$ for $p(c) \geq 0$ and consequently $p(c) \geq 0$ for $p(c) \geq 0$ for p(

A slight digression from our development proves Stephanos' theorem. Let ϕ be a multiplicative mapping of the ring of n by n matrices with complex entries into the complex plane such that ϕ is differentiable with respect to each entry. It follows that there is a multiplicative mapping p of the complex plane into itself such that $\phi(A) = p(\det A)$ for every n by n matrix A. By considering diagonal matrices for which all diagonal elements after the first are 1, we see that p is entire. Hence p must be of the form $p(z) = z^m$ for some integer $m \ge 0$ and $\phi(A) = (\det A)^m$. Indeed it suffices if ϕ is differentiable with respect to one diagonal entry.

To establish Theorem 1 we need only show that p is the identity mapping.

PROOF OF THEOREM 1. Since p is a continuous multiplicative mapping of the unit circle into itself it follows that there is an integer m, positive, negative or zero, such that $p(z) = z^m$ for |z| = 1. Since p is a continuous multiplicative mapping of the positive real axis into itself there is a real number r such that $p(x) = x^r$ for x > 0. Now by hypothesis $\phi(\exp(1 + i)) = \exp(n + ni) = p(\exp(n + ni)) = p(\exp(n + ni))$. But $|p(\exp(ni))| = 1$ and $p(\exp(n) > 0$; hence $\exp(nni) = \exp(ni)$ and $\exp(rn) = \exp(ni)$. Clearly r = 1; because π is irrational m = 1. Hence p is the identity and the proof is complete.

Next we turn to continuous *-multiplicative mappings other than the determinant.

THEOREM 2. Let ϕ be a continuous *-multiplicative mapping of $L(h_n)$ into the complex numbers. Then

- (1) If $\phi(\exp(1+i)) = 0$, ϕ is identically 0.
- (2) If $|\phi(\exp(1+i))| = 1$, ϕ is identically 1.
- (3) If θ is another continuous *-multiplicative mapping such that

58 S. CATER

$$\phi(\exp(1+i)) = \theta(\exp(1+i)),$$

then $\phi = \theta$ on $L(h_n)$.

PROOF OF (1). If $\phi(\exp(1+i)) = 0$, then $\phi(A) = \phi(\exp(1+i))$ $\cdot \phi(\exp(-1-i)A) = 0$, all $A \in L(h_n)$.

PROOF OF (2). Suppose $|\phi(\exp(1+i))| = 1$ but there is a $T \in L(h_n)$ such that $\phi(T) \neq 1$. Then $\phi(0) = \phi(0)\phi(T)$ and $\phi(0) = 0$. Lemma 1 is valid for ϕ , and so are all the Lemmas 1-7. In the proof of Theorem 1 we necessarily have r = 0, and hence $|\phi(A)| = 1$ for A nonsingular. But in every neighborhood of the zero operator there are nonsingular operators, contrary to the fact that ϕ is continuous. Hence ϕ is identically 1.

PROOF OF (3). We can suppose that $\phi(\exp(1+i)) = \theta(\exp(1+i))$ is not 0 and not 1. Then Lemmas 1-7 apply to ϕ and to θ . In the proof of Theorem 1, ϕ and θ define the same r and the same m, and the result is established.

Given a complex number c there is at most one continuous *-multiplicative mapping ϕ of $L(h_n)$ into the complex plane such that $\phi(\exp(1+i))=c$. It remains to find the admissible values for c, those complex numbers for which there exists such a ϕ . Clearly 0 and 1 are admissible values. Lemmas 1-7 are valid for any ϕ not identically 0 or 1 and the proof of Theorem 1 shows that $\arg \phi(\exp(1+i))$ is a multiple of n. Likewise $|\phi(\exp(1+i))| > 1$; otherwise $r \le 0$ and ϕ is discontinuous at the zero operator. This proves

THEOREM 3. The admissible values of c are 0, 1 and any complex number c for which |c| > 1 and c/|c| is a (positive, negative or zero) power of $\exp(ni)$.

REFERENCES

- P. R. Halmos, Finite dimensional vector spaces, 2d ed., Van Nostrand, Princeton, N. J., 1958.
- 2. K. Hensel, Über den Zusammenhang zwischen den Systemen und ihren Determinanten, J. Reine Angew. Math. 159 (1928), 246.
- 3. C. Stephanos, Sur une propriété caractéristique des déterminants, Ann. Mat. 21 (1913), 233-236.

University of Oregon