
REMARKS ON A PAPER OF HOBBY AND WRIGHT

PAUL HILL1

C. Hobby and C. R. B. Wright [2] have just published the follow-

ing Theorem A. However, their proof seems to contain an error.2

The notation of [2 ] is used except that Gn is not reserved for the

»th term of the lower central series of G : 0(G) denotes the Frattini

subgroup of G; (G, H) means the group generated by the commuta-

tors g-lh~lgh where gEG, hEH; (Ai, A2, ■ ■ ■ , An+i) is defined in-

ductively as ((Ai, A2, • • • , An), An+i); HQG means that H is

properly included in G.

Theorem A. // G is a finite p-group and H a subgroup of G such

that HnEGn, then (H<p(G))nEGn, where Xn denotes the nth term of the

lower central series of X.

N. Itô [3] had already proved this theorem for the case » = 2. In

this note, Itô's theorem is generalized in a somewhat stronger form

than Theorem A. In fact, as was shown in [2], if Theorem A were

false, it would have to fail for a normal subgroup H of G. In the

presence of this fact, Theorem A is contained in

Theorem B. Let GiQG2Q ■ ■ ■ QGn = G be a nondecreasing finite

chain of normal subgroups of a finite p-group G and let Hi,Hi, ■ ■ • , H„

be normal subgroups of G with HiÇLGifor all i. If

(Hi, Hi, ■ ■ • , Hn) C (Gi, G2, • ■ • , Gn),

then

(Hi<b(Gi), H2<p(G2), ■ ■ ■ , Hn<p(Gn)) C (Gi, G2, • ■ ■ , G„).

Proof. Suppose that the theorem is false for a certain n. Let G be

of minimal order for which it is false and let Hi, H2, • ■ ■ , H„ be

chosen such that if Kf is a normal subgroup of G and HiEKiQd for

any i, then

(Hi, H2, • • • , Ki, • • • , Hn) = (Gi, G2, ■ ■ • , Gn) •

For convenience, set (Hi, H2, • • • , Hn)=A, (Hi<p(Gi),'H^d),

• ■ ■ , Hn4>(Gn)) =B, and (Gi, G2, • • • , Gn) = C. First, it is noted that
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1 The fact that G is noncyclic does not imply that 4>{G) is the intersection of all

normal subgroups of index p* in G.
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(7Ji/4, • • • , En/A) = A/A C C/4 = id/A, •■■ , Gn/A).

Thus if 4 7^(1), the relation

73/4 = (Hvi>(Gi)/A, ■ ■ ■ , Hn<b(G„)/A) C C/A

holds according to the choice of G since in general <p(G/N) = N<f>(G)/N.

However, this implies that B EC; hence 4 = (1).

Let z be an element of order p in Z, the center of G. If the relation

(«)/<«) = ((z)Hi/{z), ■■■, (z)Hn/(z))

E i(z)Gi/{z), • • • , <«XW<*>, Gn/(z)) = (z)C/(z)

holds, then

(Z)73/(Z) = ((2)7Ji0(Gi)/(Z), • • • , (z)Hn<p(Gn)/(z)) C (z)C/(z),

which implies that B(ZC Thus C=(z).

Since all the subgroups involved are normal, from the linearity

properties of commutators [l, p. 150] it follows that

(Ei, • • • , Hk-i, Hk<p(Gk), Hk+i, ■ • • , Hn)

= A(HU • • ■ , Hk-U <b(Gk), Hk+i, • • • , Hn) = (1).

But Hk EHk<t>(Gk) for some k. Thus a contradiction has been estab-

lished on the choice of the Hi, and the theorem is proved.
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