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Introduction. It has recently been shown by Dixmier [2], and also

by Kirillov [7], that a connected nilpotent Lie group G is CCR. This

means that, if T is any irreducible unitary representation of G and

fELi(G), Tf is a completely continuous operator in the space of T.

In this note we give a new proof of this fact.

The methods of Dixmier and Kirillov actually yield more than

complete continuity. They are able to single out a dense subspace of

7>i(G) whose image under any irreducible unitary representation of

G consists of operators with trace. Our proof does not give this extra

information; on the other hand it requires considerably less analysis.

It is based on Rosenberg's theorem [ll ], which asserts that a separa-

ble C*-algebra which has (to within equivalence) only one irreducible

^representation must be *-isomorphic with the algebra of all com-

pletely continuous operators in some Hubert space. In terms of the

hull-kernel topology of the dual space A of an arbitrary C*-algebra A,

Rosenberg's result may be stated thus: An element T of A is com-

pletely continuous (i.e., Ta is completely continuous for all a in A)

if and only if the one-element set { T] is closed in A.1 The problem

is thus reduced to that of showing that the dual space of a connected

nilpotent Lie group is Ti (i.e., points are closed). This is done by an

inductive procedure which, apart from the topological preliminaries,

is a special case of Takenouchi's procedure in [12].

In this paper, by a representation of a locally compact group G

(or *-algebra A) we always mean a unitary representation (or a "'-rep-

resentation with no null space) acting in a separable Hubert space.

If G is a locally compact group, C*(G) will be its group C*-algebra

(the completion of ¿i(G) under the minimal regular norm) ; we use the

same letter for a representation of G and the corresponding repre-

sentation of C*(G). A representation T of G is completely continuous if

Ta is completely continuous for all a in C*(G). If N is a closed normal

subgroup of G, and T' is a representation of G/A7, the representation

T of G given by Tx = T'Nx is said to be lifted from T' ; if V is completely

continuous, so is T.

Received by the editors January 3, 1961.

1 The latter form of Rosenberg's theorem is to be found explicitly in [6, Theorem

4]. Indeed, Rosenberg's theorem is easily seen to be a very special case of Theorem 1

of [6].
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Let Tí be a closed subgroup of G. If T is a representation of G,

T\ K is the restriction of T to K; if 3 is a family of representations of

G, 31K is the set of all T\ K, where TG3. If T is a representation of

7?, UT is the representation of G induced from 2" (see [8]); if 3 is a

family of representations of K, Î/3 is the set of all UT, where TG3.

Let A be a C*-algebra (or a locally compact group). As in [3], if

S and 3 are two families of representations of A, we say that S is

weakly contained in 3 if every positive functional on A associated with

any representation in S is a weak * limit of sums of positive func-

tional associated with representations in 3 (or, if every function of

positive type on A associated with any representation in S is a uni-

form-on-compacta limit of sums of functions of positive type asso-

ciated with representations in 3). If each is weakly contained in the

other, S and 3 are weakly equivalent. Now assume that A is separable.

Then A, the dual space of A, is defined as the family of all (equiva-

lence classes of) irreducible representations of A, equipped with the

so-called hull-kernel topology. Restricted to A, the relation of weak

containment coincides with closure in the hull-kernel topology of A.

For more information on the hull-kernel topology, and the relations

of weak containment and weak equivalence, we refer the reader to

[3].

1. Orbits in the dual space of a normal subgroup. In this section we

fix a separable locally compact group G with unit element e, and a

closed normal subgroup K of G which (a) is of Type I and has smooth

dual,2 and (b) is regularly embedded in G.3 Let us review the known

facts about the relationship between K and G (see [lO]).

If L is any representation of K and xEG, Lx will be the representa-

tion of K defined by: Lf=Lxix-i. If LEK, {xEG\Lx^L} is a closed

subgroup of G containing K, called the stationary subgroup of L and

denoted by Sr.. An orbit is a subset of K of the form {Lx\xEG] (for

some L in K). Each orbit is a Borel set (with respect to the Borel

structure of K defined in [9]). Now let T be an element of G. The

restriction of T to K uniquely determines a projection-valued measure

Pt on the Borel subsets of K, whose values are projections in the

space H(T) of T. By the regular embeddedness of K, PT is confined

to some orbit 6 (i.e., PT(K—6) =0) ; we say that Tis associated with 6,

and refer to this 8 as dr. Let Ge be the set of all T in G which are asso-

1 For the notion of smooth dual, see [9, p. 151]. It is now known (see [6]) that A

is of Type I if and only if it has a smooth dual ; so one of these hypotheses may be

omitted.

' By this we mean that the quotient Borel space of the orbits of K under G is count-

ably separated. Mackey in [lO] gives a formally weaker definition (see p. 302).
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ciated with the orbit 6; more generally, if MEK and M is a union of

orbits, Gm will be the set of all T in G which are associated with

some orbit contained in M. A classification of Ge is afforded by the

following fact:

Proposition l.4 Let 6 be an orbit, and L an element of 6 with station-

ary subgroup SL. Then the mapping W-*UW sets up a one-to-one cor-

respondence between the family Ql of all elements W of (Sl) whose

restriction to K is a multiple of L, and the family Ge.

Now consider the topologies of K and G. Though the fact will not

be needed here, we observe that the Borel structure of K is just that

generated by the topology of K. Indeed, K being of Type I, the ele-

ments of K (considered as representations of C*(K)) are determined

by their kernels (see [6, Theorem 1 ]) ; so we may invoke Theorem 4.1

of [4] to obtain the desired conclusion.

For each x in G, the map L—*LX is a homeomorphism of K onto

itself; hence the closure in K of a union of orbits is again a union of

orbits. More generally, we have the following easy lemma:

Lemma 1. The map (x, L)-^LX is continuous on GXK into K.

The following proposition was established in the course of the proof

of Theorem 4.3 of [5]:

Proposition 2.6 If H is any closed subgroup of G containing K, and

T is any representation of H, then UT \ K is weakly equivalent to the set

of all (T\K)X (xEG).

From this together with Proposition 1 we deduce immediately:

Lemma 2. If 6 is an orbit and P£G«, then T\ K is weakly equivalent

tod.

Lemma 3.6 If M is a closed subset of K which is a union of orbits, then

Gm is closed in G.

Proof. Suppose T is an element of G weakly contained in Gm- By

[3, Corollary of Theorem 1.3], T\ K is weakly contained in Gm\K.

By Lemma 2, this implies that 8t is weakly contained in M, i.e.,

OtEM=M. So TEGm.

* This is Theorem 8.1 of [lO], for the case of the trivial multiplier.

6 For this proposition K need not be of Type I or regularly embedded.

• The stronger statement that, if M is a union of orbits, the closure of Gm is Gm

seems likely to be true, but may require a good deal more technical apparatus for its

proof.
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Lemma 4.7 Let 6 be an orbit and L an element of 6; and suppose that

the following three conditions hold: (i) 6 is closed in K; (ii) St is normal;

(iii) the natural map xSl—»7> of G/Sl onto 0 is a homeomorphism of

G/Sl into K. Then the one-to-one correspondence W*-*UW between Ql

and Ge (see Proposition 1) is a homeomorphism (with respect to the

topologies of (Si)   and G relativized to Ql and Ge respectively).

Proof. Theorem 4.1 of [5] asserts that the map W-+Uw is con-

tinuous. To show that its inverse is continuous, we suppose that

WEQl, NEQl, and [Z311 weakly contains UN, and show that 311
weakly contains N.

Since [Z911 weakly contains UN, U^ SL weakly contains UN\SL.

Hence, by Proposition 2 applied to the closed normal subgroup S¿,

the orbit of N (in (S¡) ) is contained in the closure of the union V

of the orbits of the elements of 911. In particular NE V. Hence there

is a net {(M'Y") of elements of F such that M'£3H, x'EG, and

(i) (wy-*n in isLy.

Since N and M' are in QL, N\ K is a multiple of L, and (M")x"\ K is a

multiple of Lx". Hence, restricting (1) to K (and using [3, Corollary

of Theorem 1.3]), we deduce that LX"-^>L. By condition (iii) of the

lemma, this shows that x'Sx,—>Sl (in G/Sl) ; so we might as well have

assumed from the beginning that x"—>e. But then, by (1) and Lemma

1, M'=((M')X")'-X'')''1-^N; and N belongs to the closure of 311. This

completes the proof.

Let A be any C*-algebra. If T is a representation of A, its range

B = T(A) is again a C*-algebra; and we refer to the dual space B of

B as the dual space of T. If T is a representation of a locally compact

group Go, the dual space of T is the dual space of the representation of

C*(Go) which corresponds to T.

Proposition 3. Let A be either a separable C*-algebra or a separable

locally compact group, and T an element of A. The dual space of T is

homeomorphic with the closure of {T} in A (with the topology relativized

from A). The representation T is completely continuous if and only if

T} is closed in Â, i.e., if and only if the dual space of T is a one-

element set.

Proof. We need consider only the case that A is a separable C*-

algebra. The first statement of the proposition follows immediately

from the definition of the hull-kernel topology. The second statement

follows from Rosenberg's theorem [ll] (see the Introduction).

Returning to our fixed group G, we now have:

The proof of Lemma 4 actually does not require condition (i).
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Theorem 1. Let d be an orbit in K, and L an element of 9; and suppose

that the conditions (i), (ii), (iii) of Lemma 4 hold. Then, for each W in

Ql, W and Uw have homeomorphic dual spaces. In particular, W is

completely continuous if and only if Uw is.

Proof. Let W be in QL. Since 6 is closed, G$ is closed in G by

Lemma 3; so by Proposition 3 the dual space of Uw is the closure of

{ Uw] relative to G«. Again, by conditions (i) and (iii) of Lemma 4,

{/_,} is closed in K. Hence, using [3, Corollary of Theorem 1.3], we

find that QL is closed in (SL) ; so the dual space of W is the closure

of {W} relative to Ql- Now, by Lemma 4, Ql and G« are homeo-

morphic under the correspondence M*^>UM. So W and Uw have

homeomorphic dual spaces.

The last statement of the theorem follows immediately from the

first together with Proposition 3.

2. Nilpotent groups. Let G be a simply connected nilpotent Lie

group of dimension n, g its Lie algebra, and E the exponential map-

ping of g into G. The following facts about G are well known (see for

example [l]; [12]):

(1) E is one-to-one onto G.

(2) Every closed connected subgroup of G is simply connected.

(3) The center of G is connected.

(4) If f) is a subalgebra of g, £(f)) is the connected closed subgroup

of G (normal if Í) is an ideal) whose Lie algebra is f).

(5) g has a composition series:

{0} = g0 C 8i C • • • C gr = g,

where g¿ is an ideal of g, each 8i/8¿-i is one-dimensional, and [g, g,]

Cßt-i. In particular, the center of g contains 8i-

Theorem 2. Every irreducible unitary representation of G is com-

pletely continuous.

Proof. This will be proved by induction in the dimension n of G.

For n = 1 the theorem is trivial. So let n be greater than 1 ; and assume

the theorem true for all connected nilpotent groups of dimension

less than n.

Suppose first that the center C of G is of dimension greater than 1.

If T is an irreducible unitary representation of G, T\ C is the identity

operator multiplied by a character x of C. Since dim C^2, there is

a one-dimensional closed subgroup K of C on which x — 1; T will

then be lifted from an irreducible unitary representation T' of G/K.

Since G/K is nilpotent, connected, and of dimension less than n, T'
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is completely continuous by the inductive hypothesis. Hence so is T.

So it is enough to assume that dimC=l, i.e., C = £(8i). Let

G2 = E(q,i); G2 is a closed normal Abelian subgroup of G, isomorphic

with the two-dimensional vector group. Suppose that {u, v] is a

basis of g2 with uE§i- Since [a, 82] C8i> there is a real linear functional

X on 8 such that

(2) [x,v]=\(x)u (xG8).

Since v is not in the center of 8, X is not identically zero. Let x»,»

(a, b real) be the character of G2 sending E(ru+sv) into ei(ar+b''> ; for

£ in G and r¡ in G2, let xl,b(v) =X»Áfre~1)- H £ = £(*)> xEñ, we verify
that

(3) Xa.b  =   Xa,X(i)a+6-

Thus the orbit of Xo.i. under G consists of (i) ö?= |xo,¡>} if a = 0, (ii) Ö1

= {xo.fcl b real} if a^O.Tn particular, G2 is regularly embedded in G

and all orbits are closed in G2. Further, by (3), the stationary sub-

group of Xa.b is G if a = 0, and S = E(N), where N is the null space of

X, if ö?^0. It is easy to see that N is an ideal of 8 (in fact, it contains

all Lie products [x, y], where x, yE&); so S is closed, simply con-

nected, and normal, and of dimension less than n. For fixed a^O, the

correspondence E'(x + N)—>Xo,x(x)a+6 (£' being the exponential map-

ping of 3/A7 onto G/S) is clearly a homeomorphism of G/S onto 0j.

Thus each orbit in G2 satisfies all the conditions of Theorem 1.

Now let T be any irreducible unitary representation of G. Since

G2 is regularly embedded in G, T is associated with some orbit in G2.

Case I. T is associated with 6\, a¿¿0. By Proposition 1, T is of the

form Uw, where WES. Since S is a connected nilpotent group of

dimension n — 1, the inductive hypothesis assures us that W is com-

pletely continuous. Hence, by Theorem 1, T is also completely con-

tinuous.

Case II. T is associated with 6°b, b real. This means that T restricted

to G2 is the identity operator times the character xo,¡>. In particular,

T is the identity operator on C. It follows that T is lifted from an

irreducible unitary representation T' of G/C, which is of dimension

n — 1. By the inductive hypothesis T' is completely continuous; hence

so is T. This completes the proof.
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ON A RESULT OF BAER

MAXWELL ROSENLICHT

The theorem is that if H and N are subgroups of the group G, with

N normal in G, and if the set of commutators

{hnh^n-^ h E H, n E N}

is finite, then so is the group [H, N] generated by these. Here we give

a proof that seems considerably simpler than the original one [l]

(cf. also [2, exposé 3] for the case where both H and N are normal

inG).

The most important special case of Baer's result concerns a group

G whose center is of finite index, in which case the assertion is that

the commutator group of G is finite. Here is a brief proof, similar to

the one given in [3, p. 59]: It suffices to show that any product of

commutators of elements of G can be written as such a product with

at most n3 factors, n being the index of the center of G. Noting that

there are at most n2 distinct commutators, and that in any product of

commutators any two factors may be brought together by replacing

the intermediate factors by conjugates, also commutators, it suffices

to show that the (w + l)th power of a commutator is the product of n
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